
The Journal of Systems and Software 217 (2024) 112166 

A
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Reliable proactive adaptation via prediction fusion and extended stochastic
model predictive control✩
Zhengyin Chen a,b, Jialong Li c, Nianyu Li d,∗, Wenpin Jiao a,b

a School of Computer Science, Peking University, Yiheyuan Road, 100871, Beijing, China
b Key Laboratory of High Confidence Software Technology (Peking University), MOE, China, Yiheyuan Road, 100871, Beijing, China
c Department of Computer Science and Engineering, Waseda University, 169-8050, Tokyo, Japan
d Zhongguancun Lab, Beijing, China

A R T I C L E I N F O

Dataset link: https://github.com/easton-chen/
DART-SMPC.git

Keywords:
Proactive self-adaptation
DS-evidence theory
Model Predictive Control

A B S T R A C T

Proactive self-adaptation has emerged as a vital approach in recent years, aiming to preemptively address
potential goal violations or performance degradation, thus improving the system’s reliability. However, this
approach encounters specific challenges in prediction and decision-making, including issues such as erroneous
predictions and adaptation latency. Addressing these issues, our study presents an innovative framework
that leverages evidence theory to improve prediction accuracy and employs stochastic model predictive
control (SMPC) for devising reliable adaptation strategies. We further refine the decision-making process by
incorporating a latency-aware system model and a novel utility model inspired by the technical debt metaphor
into the SMPC. Our framework’s effectiveness is validated through experiments conducted on a cyber–physical
system exemplar DARTSim, demonstrating notable improvements in prediction accuracy and system reliability
within dynamic environments.
1. Introduction

Modern software systems are increasingly required to operate au-
tonomously under changing conditions. This dynamic and uncertain
environment will affect the reliability of the software system, under-
mining the ability of the software to consistently perform its intended
functions without failure (Neufelder et al., 2016). Self-adaptation has
been recognized as a crucial approach to manage runtime uncertainty,
enabling software to adjust its behavior in response to environmental
and internal changes so that it can consistently fulfill its require-
ments (Lemos et al., 2013). To achieve this, a self-adaptive software sys-
tem should have certain self-* properties: self-configuring, self-healing,
self-optimizing, and self-protecting. These properties are strongly re-
lated to software quality factors such as efficiency, availability, and
especially reliability (Salehie and Tahvildari, 2009).

Traditional self-adaptive methods typically employ a goal viola-
tion trigger mechanism. This reactive feature may lead to delays in
adaptation, potentially compromising the system’s ability to prevent or
mitigate goal violations effectively, thus reducing reliability (Moreno
et al., 2015). Therefore, proactive adaptation emerges as a solution,
aiming to foresee and mitigate potential disruptions before they im-
pact the system. This approach involves predicting future context and

✩ Editor: Prof. Raffaela Mirandola.
∗ Corresponding author.
E-mail addresses: chenzy512@pku.edu.cn (Z. Chen), lijialong@fuji.waseda.jp (J. Li), li_nianyu@pku.edu.cn (N. Li), jwp@pku.edu.cn (W. Jiao).

system states to identify risks and evaluating different strategies to
optimize performance (Cooray et al., 2013; Wang et al., 2018; Shin
et al., 2021). It is particularly valuable in scenarios where delays
in adaptation or the costs associated with goal violations are high.
A notable implementation of proactive adaptation is through Model
Predictive Control (MPC), which uses a system model to forecast the
future state of the system and optimizes control actions by solving an
iterative optimization problem (Wang et al., 2015; Angelopoulos et al.,
2018; Ayala et al., 2021). MPC’s ability to handle complex systems with
multiple inputs and outputs makes it well-suited for the multifaceted
nature of software systems, offering a sophisticated method to enhance
reliability in uncertain conditions (Maggio et al., 2017).

Implementing MPC-based proactive adaptation introduces specific
challenges that could impact its effectiveness. These challenges primar-
ily revolve around the accuracy of predictions and decision-making
processes. Firstly, the dependency on model prediction accuracy for
MPC is a critical concern. As outlined by Fan et al. (2020) and Weyns
(2020), MPC-based methods make decisions based on predictions of
future states. The inherent uncertainty in predicting future contexts,
essential for determining the system’s behavior, poses a significant
risk. Inaccurate predictions may lead to decisions that do not im-
prove or might even compromise the software system, undermining its
https://doi.org/10.1016/j.jss.2024.112166
Received 1 March 2024; Received in revised form 20 July 2024; Accepted 25 July
vailable online 26 July 2024 
164-1212/© 2024 Elsevier Inc. All rights are reserved, including those for text and 
2024

data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
https://github.com/easton-chen/DART-SMPC.git
mailto:chenzy512@pku.edu.cn
mailto:lijialong@fuji.waseda.jp
mailto:li_nianyu@pku.edu.cn
mailto:jwp@pku.edu.cn
https://doi.org/10.1016/j.jss.2024.112166
https://doi.org/10.1016/j.jss.2024.112166
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2024.112166&domain=pdf


Z. Chen et al. The Journal of Systems & Software 217 (2024) 112166 
reliability. Secondly, the decision-making aspect of classical MPC ap-
proaches reveals two main problem-modeling issues affecting proactive
adaptation. The initial issue is the oversight of adaptation latency—
the delay between initiating an adaptation action and observing its
effects (Keller and Mann, 2020). This oversight can result in a misjudg-
ment of the adaptation strategy’s effectiveness, leading to sub-optimal
decisions that degrade software performance or even fail to adapt.
Furthermore, there is often an inadequate analysis of control objectives
within MPC frameworks. While the primary objectives typically include
aligning system outputs with predefined setpoints and minimizing con-
trol costs, existing approaches often establish the objective function on
an ad-hoc basis, devoid of systematic guidance. This may lead to less
reliable objective functions that ignore critical aspects such as immedi-
ate and long-term costs, potentially compromising the soundness and
thoroughness of the adaptation strategy.

To effectively tackle the challenges of inaccurate predictions and
decision-making in MPC-based proactive adaptation, our approach in-
troduces an innovative framework that integrates evidence theory with
an enhanced version of stochastic Model Predictive Control. Improving
Prediction Accuracy: To counter the issue of inaccurate predictions,
our framework employs evidence theory to enhance the accuracy of
context predictions by amalgamating historical prediction, and thus
improve the system state prediction. This method mitigates the risks
associated with premature predictions and erroneous predictions by
incorporating a broader data spectrum, thereby ensuring more depend-
able outcomes and improving the system’s reliability. Furthermore, we
adopt stochastic Model Predictive Control (SMPC) to navigate the in-
herent uncertainty in context prediction, which manifests in probabilis-
tic form. This approach involves solving a stochastic control problem
that accounts for the probabilistic nature of future contexts, aiming to
identify the adaptation strategy with the highest expected utility. This
strategy exhibits greater robustness, capable of tolerating prediction
errors and reducing false adaptations, in contrast to solely relying on
predictions with the highest probability. Refining the Decision-making
Process: To overcome inaccuracies in the problem-modeling aspect of
decision-making, our framework introduces two key innovations. First,
a latency-aware system model incorporates the delay between the
initiation and the effect of adaptation actions, preventing premature
adaptations that impair system performance or untimely adaptations
that fail to be effective. Second, we utilize a utility model inspired
by the technical debt metaphor to evaluate adaptation strategies com-
prehensively. This model assesses strategies based on their costs (both
immediate and long-term) and benefits, allowing for a more systematic
and nuanced analysis.

This paper contributes to the field of proactive software adaptation
in three key areas: (1) We introduce a context prediction enhancing
method based on evidence theory, which improves prediction accuracy
and reduces the uncertainty in future predictions by integrating histori-
cal prediction data. (2) We propose a novel decision-making framework
leveraging SMPC tailored for uncertain predictions. Furthermore, we
incorporate the SMPC with a latency-aware system model and a utility
model based on the technical debt metaphor, enabling more precise
and informed decision-making by accounting for adaptation timing and
cost–benefit analysis. (3) We validate our approach through experi-
ments in a case study, demonstrating its effectiveness in enhancing both
the accuracy of context predictions and the efficacy of decision-making
in reliable proactive software adaptation.

The remainder of the paper is organized as follows. Sections 2 and 3
discuss related work and background knowledge. Section 4 provides an
overview of our framework. The prediction fusion method and decision-
making mechanism are introduced in Sections 5 and 6. Experiments are

conducted in Sections 7 and 8 concludes the paper.

2 
2. Related work

2.1. Context prediction

Context prediction plays a pivotal role in proactive self-adaptation,
essential for forecasting the system’s future state and its interaction
with dynamic environments. Traditionally, the influence of environ-
mental changes on system behavior has been implicitly modeled,
with variations in system operations serving as indicators of exter-
nal changes. For instance, Cooray et al. (2013) employ discrete-time
Markov chains to model system components and utilize hidden Markov
models to deduce the impact of environmental shifts on transition
probabilities, thereby estimating system reliability. Similarly, Tanabe
et al. (2017) represents the environment and system behavior using a
label transition system, updating the model in real-time via stochastic
gradient descent. Moreno et al. (2015) adopt a more explicit approach
by employing an auto-regressive (AR) time series predictor alongside a
probability tree to articulate the uncertainty inherent in environment
predictions. Moreover, Shin et al. (2021) introduces PASTAA, a tech-
nique grounded in statistical model checking that leverages historical
data for environment forecasting.

Contrary to these methodologies, our approach seeks to augment
existing prediction techniques by integrating historical prediction data,
thereby refining the accuracy of future forecasts through evidence
theory. This strategy does not prescribe a specific prediction model;
instead, it necessitates that the prediction aligns with the requirements
set forth by evidence theory, enhancing versatility and applicability
across various predictive models. In the subsequent section, we eluci-
date the fundamental principles of evidence theory. To our knowledge,
this marks the first instance of applying evidence theory to context
prediction within the realm of proactive self-adaptation, signifying a
novel contribution to the field.

2.2. Model predictive decision-making

Proactive adaptation research extensively incorporates MPC con-
cepts from control theory to enhance software system adaptability. Ku-
sic et al. (2009) applied MPC to data centers, enabling dynamic
resource provisioning that optimizes server utilization and energy
efficiency while ensuring quality of service. Similarly, the CobRA
method (Angelopoulos et al., 2016, 2018) integrates MPC with re-
quirements engineering, utilizing an extended requirements model to
articulate the system’s goals and adjustable parameters. The ProDSPL
method (Ayala et al., 2021) merges MPC with a feature model to
optimize key performance indicators within the constraints of the
feature model, illustrating the versatility of MPC in addressing diverse
adaptation challenges.

Contrary to these direct applications of control theory, the PLA
approach (Moreno et al., 2015) aligns with the overarching concept of
MPC but diverges in its implementation. PLA adopts an architecture-
based strategy, employing Markov decision processes for system mod-
eling and addressing uncertainty through probabilistic model check-
ing and stochastic dynamic programming (Moreno et al., 2018). De-
spite sharing a conceptual foundation with MPC, PLA and MPC-based
methods differ significantly in their implementation (Moreno et al.,
2017). PLA necessitates domain-specific knowledge for system mod-
eling, whereas MPC-based methods can leverage system identification
techniques. Furthermore, PLA conceptualizes adaptation strategies as
tactics, while MPC approaches utilize direct control variables (Moreno
et al., 2017).

Our methodology extends classical MPC in three significant ways.
Firstly, it incorporates a latency-aware system model to account for
the delay between the initiation of adaptation decisions and their
outcomes. Secondly, we introduce a utility model inspired by the
technical debt metaphor, guiding the establishment of control objec-

tives with a focus on long-term cost–benefit analysis. Lastly, we apply



Z. Chen et al.

o
e

𝛺

𝛺
b
i
p

𝑚

𝐴

u
c
u

𝑚

w

𝐾

T
c
a
t

t
a
i
s
o
i
a

3

r
m
h
c
r
a
t
t
a
i
e
c
t

m
c
a
q
s
a

The Journal of Systems & Software 217 (2024) 112166 
stochastic control to manage the inherent uncertainty in contextual
information. These enhancements aim to refine decision-making pro-
cesses in proactive adaptation, offering a comprehensive approach
that balances immediate system needs with long-term viability and
robustness against uncertainty.

2.3. Adaptation latency and effect assessment

A crucial aspect of timely proactive adaptation is accounting for the
latency associated with executing adaptation behaviors. Cámara et al.
(2014) utilized stochastic games to model systems with latency aware-
ness, capturing the delay associated with adaptation tactics and their
mutual exclusions. Building on this foundation, Moreno et al. (2015)
introduced the PLA-PMC method, leveraging probabilistic model check-
ing for proactive adaptation in uncertain environments. This methodol-
ogy was further refined in the PLA-SDP method (Moreno et al., 2018)
to eliminate the runtime overhead. Zhang et al. (2020) explored adap-
tation lead time in service-based systems through the Letpa method,
employing dynamic programming to manage adaptation across differ-
ent levels of control parameters. Palmerino et al. (2019) introduced
the concept of tactic volatility, emphasizing the significance of ac-
curately predicting the runtime cost and latency of tactics to ensure
effective proactive adaptation. They utilized a Multiple Regression
Analysis (MRA) model to forecast tactic performance, highlighting the
importance of precision in adaptation planning. Li et al. (2021) shifted
focus to the human aspects of adaptation, investigating the optimal lead
time for engaging individuals in adaptation tasks through stochastic
multi-player games. This study considers task complexity and training
levels, offering insights into human-centered adaptation strategies. De-
spite these advancements, latency considerations have remained largely
unexplored within MPC-based proactive adaptation. To bridge this gap,
our work extends the traditional state–space model used in MPC to
incorporate latency representations. This enhancement enables a more
comprehensive and effective application of MPC in managing proactive
adaptation, allowing for the consideration of adaptation execution
delays and their impact on system performance.

In MPC, the effectiveness of the control is evaluated through the
formulation of an objective function, which commonly addresses the
deviation between system output and desired setpoints, alongside con-
trol costs. In many MPC-based self-adaptation methodologies, the def-
inition of this objective function is tailored to the specific characteris-
tics of the system under consideration. For instance, in studies such
as Angelopoulos et al. (2018) and Wang et al. (2015), variations in
control parameters are treated as costs, while in Ayala et al. (2021),
the weights of enabled features are prioritized. Within the realm of
adaptation, there exists a body of research aimed at quantifying the
impact of adaptation using financial metrics like Return on Invest-
ment (ROI) (Gerostathopoulos et al., 2022), or concepts from software
engineering such as technical debt (Chen et al., 2018; Kumar et al.,
2019). Leveraging this perspective, we introduce a utility model in this
paper, drawing from the technical debt metaphor, to systematically and
comprehensively define the objective function.

3. Background

3.1. Evidence theory

Evidence theory is a method of fusing multiple sources of infor-
mation to eliminate uncertainty, also known as Dempster–Shafer the-
ory (Dempster, 1967; Shafer, 1976). Evidence theory is based on two
ideas: the idea of obtaining degrees of belief about an issue from
the subjective probabilities of related issues, and Dempster’s rule for
combining these degrees of belief when they are based on independent
evidence. We begin by introducing the basic concepts of evidence

theory. i

3 
The frame of discernment 𝛺 is an exhaustive set of all hypotheses
f a problem, all of which are mutually exclusive. Let 𝛺 contain 𝑁
lements, 𝛺 can be expressed as:

= {𝐻1,𝐻2,… ,𝐻𝑁} (1)

A subset 𝐴 of 𝛺 is called a proposition and the power set 2𝛺 of
denotes all subsets of 𝛺. A function 𝑚 ∶ 2𝛺 → [0, 1] is called a

asic probability assignment or mass function if it has the following two
mportant properties. The mass function assigns a probability to each
roposition in the frame of discernment.

(∅) = 0 (2)

∑

∈2𝛺
𝑚(𝐴) = 1 (3)

The Dempster combination rule (denoted by 𝑚 = 𝑚1 ⊕ 𝑚2) is
sed to combine two independent mass functions (𝑚1 and 𝑚2). The
ombined mass function 𝑚 contains information from 𝑚1, 𝑚2 to mitigate
ncertainty. For all non-empty set 𝐴 ∈ 2𝛺, It is defined as:

(𝐴) = 1
1 −𝐾

∑

𝐵,𝐶∈2𝛺 ,𝐴=𝐵∩𝐶

𝑚1(𝐵) ⋅ 𝑚2(𝐶) (4)

here,

=
∑

𝐵∩𝐶=∅
𝑚1(𝐵) ⋅ 𝑚2(𝐶) (5)

he 𝐾 is known as the conflict factor, which reflects the degree of
onflict between two pieces of evidence. The Eq. (4) can be interpreted
s direct support about 𝐴 after removing the conflicting parts of the
wo pieces of evidence.

Evidence theory is characterized by (1) Satisfying a weaker condi-
ion than Bayesian theory, i.e., it does not have to satisfy probabilistic
dditivity. (2) It can directly express ‘‘uncertainty’’ and ‘‘don’t know’’,
nformation that is expressed in the mass function and which is pre-
erved during the combination. (3) It allows one to assign belief not
nly to a single element of the hypothesis space but also to a subset of
t, much like the human process of evidence gathering at all levels of
bstraction.

.2. Technical debt

In software engineering, technical debt refers to a metaphor that
eflects technical compromises that can produce short-term benefits but
ay compromise the long-term health of a software system (Cunning-
am, 1993). To visualize technical debt, interest and principal are most
ommonly used to describe and explain the technical debt concept. In
elated work (Chen et al., 2018), three components, principal, interest,
nd revenue, are proposed to characterize the debt problem in adap-
ation, so as to assess the need for adaptation. Where principal refers
o a one-time investment in an asset (e.g., software); interest is the
dditional cost of the asset that accumulates over time; and revenue
s the return on the asset that accumulates over time. Technical debt is
qual to the sum of 𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 and 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡, its net value (net debt) is
alculated as 𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 + 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡−𝑅𝑒𝑣𝑒𝑛𝑢𝑒, and the adaptation goal is
o minimize net debt.

In software development, technical debt is usually calculated in
onetary terms. However, in self-adaptive systems, utility values en-

ompassing costs and benefits are often used instead to simplify the
ssessment of technical debt, focusing on runtime performance and
uality attributes. These attributes can be monetarily quantified using
ervice level agreements (SLA Andrieux et al., 2007). To enhance
ccuracy, the cost of the system is divided into principal and interest
n technical debt, allowing for more precise utility value specifications.



Z. Chen et al. The Journal of Systems & Software 217 (2024) 112166 
Fig. 1. Overview of Model Predictive Control.

3.3. Model predictive control

Model Predictive Control is a widely used modern control tech-
nique as it offers a compromise between optimality and computation
cost (Kouvaritakis and Cannon, 2016). The overview process of MPC
is shown in Fig. 1. It uses a system dynamic model (e.g. Eq. (6)) to
represent the relationship of the system state 𝐱(𝑡 + 1) to the previous
system state 𝐱(𝑡) and control inputs 𝐮(𝑡), as well as the relationship of
the system output 𝐲(𝑡) to the system state 𝐱(𝑡) and control inputs 𝐮(𝑡)
(where 𝑡 indicates the time). Here we use bold letter notation to indicate
the case of multiple inputs and multiple outputs.

𝐱(𝑡 + 1) = 𝑓 (𝐱(𝑡),𝐮(𝑡))
𝐲(𝑡) = 𝑔(𝐱(𝑡))

(6)

In each control loop, the controller is required to solve a constrained
optimization problem, that is to find a control signal sequence 𝐮 ∗ =
⟨𝐮(0),… ,𝐮(ℎ − 1)⟩ that makes the objective function optimal over a
horizon ℎ under certain constraints, as shown in Eq. (7). The objective
function usually consists of two terms, representing the terminal ob-
jective (𝑚(⋅)) and the intermediate stage objective (𝑙(⋅)). The terminal
objective focuses on the final output of the system after the control,
i.e. 𝑦(ℎ), while the intermediate stage objective focuses on the output
and control costs of the intermediate phase, i.e. 𝑥(𝑖), 𝑢(𝑖), 𝑦(𝑖). The
estimated system outputs need to be calculated through the system
dynamic model.

𝑚𝑖𝑛
𝐮(𝑡),…,𝐮(𝑡+ℎ−1)

𝑚(𝐲(𝑡 + ℎ)) +
ℎ−1
∑

𝑖=0
𝑙(𝐱(𝑡 + 𝑖),𝐮(𝑡 + 𝑖), 𝐲(𝑡 + 𝑖))

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐱(𝑖 + 1) = 𝑓 (𝐱(𝑖),𝐮(𝑖))
𝐲(𝑖) = 𝑔(𝐱(𝑖))
𝐮𝑚𝑖𝑛 ≤ 𝐮(𝑖) ≤ 𝐮𝑚𝑎𝑥,
𝐱𝑚𝑖𝑛 ≤ 𝐱(𝑖) ≤ 𝐱𝑚𝑎𝑥,
𝑖 = 0, 1, 2,… , ℎ − 1,

(7)

In general, MPC follows the receding horizon principle, that is, in
each control loop, the controller will calculate a sequence of control sig-
nals, but the controller will only retain the first term of this sequence as
a control signal and discard the rest, and repeat the calculation process
in the subsequent control loop using the newly measured system state.
Therefore, MPC is also known as Receding Horizon Control. Due to its
ability to solve optimization problems with constraints that can help
improve the long-term performance of systems, MPC has already been
used for the implementation of proactive self-adaptive systems.

3.4. Running example: DARTSim

DARTSim (Moreno et al., 2019), a simulation of unmanned air
vehicles (UAVs) on a reconnaissance mission, serves as our running
example. In this simulation, UAVs have to detect targets on the ground
as they fly a planned route at constant speed. However, there are
threats on the ground along the route that can attack the team. The
closer the UAVs fly to the ground, the more likely they are to detect
the targets, but also the higher the probability of being detected by
threats. This poses a trade-off for the team, which is complicated by
4 
the uncertainty about the environment. The team can use tactics that
include changing altitude, changing formation, and using electronic
countermeasures (ECM) to change its behavior. In this scenario, the
goal of the system is to maximize the number of detected targets and
minimize the probability of being detected by threats. In particular
tasks, it may add a constraint that considers detection by threats as task
failure. Therefore, a reliable self-adaptive system needs to guarantee
the fulfillment of the above goal with minimal adaptation costs. We
choose DARTSim as our running example due to its embodiment of
real-world decision-making under uncertainty, thus emphasizing the
reliability of the software system. In addition, some of DARTSim’s
adaptation behaviors may have delays, such as increasing altitude,
which raises the requirement of adaptation timeliness.

4. Approach overview

Our framework advances the reliability of the proactive self-adaptive
system, as depicted in Fig. 2, by building on and enhancing the
MAPE-K model (Kephart and Chess, 2003) with a unique methodol-
ogy that diverges from the conventional MAPE-K loop. It comprises
components such as Monitor, Context Predictor, Evidence Theory-
based Prediction Fusion, Stochastic Model Predictive Control (SMPC)
Planner, and Executor, with a Knowledge Base acting as a central
repository for essential data and models facilitating adaptation. Due
to spatial limitations, the data exchange between the Knowledge Base
and other elements is described without specific labels. Together,
the Context Predictor, Prediction Fusion, and SMPC Planner execute
the Analysis and Planning aspects of the MAPE loop. The adaptation
mechanism is structured into two primary phases: prediction fusion and
decision-making.

Prediction Fusion Phase: This phase aims to enhance the accuracy of
predictions by reducing uncertainty. The Monitor captures and relays
context and system state data to the Knowledge Base and Context Pre-
dictor. The latter forecasts future context states, which are then refined
with historical predictions through Evidence Theory in the prediction
fusion process. This approach results in more accurate and reliable
predictions, laying the groundwork for effective decision-making.

Decision-Making Phase: This phase focuses on devising the optimal
adaptation strategy, defined as a series of control parameters. Utilizing
the predictions and current system state, the planner formulates a
control objective informed by a technical debt-based utility model and
assesses future system states considering adaptation latency through a
latency-aware system model. Given that predictions are probabilistic,
the planner solves a stochastic control problem to identify the optimal
control sequence that achieves the control objective while adhering to
specific constraints.

Once the optimal control sequence is determined, the Executor
implements the initial control action following the MPC’s receding
horizon principle. Subsequent actions are retained for potential future
use, ensuring readiness for situations where immediate re-planning is
necessary.

In DARTSim, the prediction fusion phase begins by monitoring
system data (such as altitude, formation, and ECM) and context data
(including images from forward-looking sensors), all stored in the
Knowledge Base. The context predictor then takes this data to estimate
the likelihood of encountering targets or threats, utilizing sensor proba-
bilities for each area ahead. Although the exact estimation methodology
is not detailed in this discussion, it is important to note that these initial
probabilities are refined through evidence theory in the prediction
fusion phase, enhancing the accuracy of the likelihood of encounters.

Following this, in the decision-making phase, the planner accesses
the updated probabilities and the UAVs’ current configuration from the
Knowledge Base. With this information, it generates a control sequence
by solving a stochastic control problem, which includes adjustments
in altitude, formation, and ECM strategies for the upcoming control
horizon. The executor is the final step in this process, where the



Z. Chen et al. The Journal of Systems & Software 217 (2024) 112166 
Fig. 2. Approach overview.
Table 1
Context prediction and fusion at time 𝑡.

𝑡 + 1 ... 𝑡 + 𝑖 ... 𝑡 + ℎ

𝑡 − ℎ + 1 𝑃𝑟𝑒𝑑𝐶𝑣(𝑡 + 1 ∣ 𝑡 − ℎ + 1) – – – –
... ... ... ... ... ...
𝑡 − 𝑘 𝑃 𝑟𝑒𝑑𝐶𝑣(𝑡 + 1 ∣ 𝑡 − 𝑘) ... 𝑃𝑟𝑒𝑑𝐶𝑣(𝑡 + 𝑖 ∣ 𝑡 − 𝑘) ... –
... ... ... ... ... ...
𝑡 − 1 𝑃𝑟𝑒𝑑𝐶𝑣(𝑡 + 1 ∣ 𝑡 − 1) ... 𝑃𝑟𝑒𝑑𝐶𝑣(𝑡 + 𝑖 ∣ 𝑡 − 1) ... –
𝑡 𝑃 𝑟𝑒𝑑𝐶𝑣(𝑡 + 1 ∣ 𝑡) ... 𝑃𝑟𝑒𝑑𝐶𝑣(𝑡 + 𝑖 ∣ 𝑡) ... 𝑃𝑟𝑒𝑑𝐶𝑣(𝑡 + ℎ ∣ 𝑡)

fused prediction at 𝑡 ̂𝑃 𝑟𝑒𝑑𝐶𝑣(𝑡 + 1 ∣ 𝑡) ... ̂𝑃 𝑟𝑒𝑑𝐶𝑣(𝑡 + 𝑖 ∣ 𝑡) ... ̂𝑃 𝑟𝑒𝑑𝐶𝑣(𝑡 + ℎ ∣ 𝑡)
planned adjustments are implemented, altering the UAVs’ operational
parameters to better suit the predicted environment. This adaptation
approach allows for a more nuanced and prepared response to potential
threats or targets, leveraging advanced prediction and decision-making
processes to optimize the UAVs’ performance in dynamic and uncertain
scenarios.

5. Prediction fusion based on evidence theory

5.1. Context prediction

Self-adaptive software systems operate autonomously in dynami-
cally changing environments. We define the portion of the environ-
ment pertinent to the software system’s goals as the context (Ali
et al., 2010), represented by a set of context variable values, 𝐜𝐯(𝑡) =
(𝑐𝑣1(𝑡),… , 𝑐𝑣𝑁𝑐𝑣

(𝑡)), where 𝑐𝑣𝑖 denotes a context variable, 𝑁𝑐𝑣 the total
number of context variables, and 𝑡 indicates time.

For illustrative purposes, our discussion narrows to a single context
variable, 𝑐𝑣. We model 𝑐𝑣 as a discrete random variable with a range
of values 𝑉 𝑎𝑙𝑢𝑒𝑅𝑎𝑛𝑔𝑒𝑐𝑣 = {𝑣𝑎𝑙1,… , 𝑣𝑎𝑙𝑚𝑐𝑣

}. The context prediction
function, 𝑃𝑟𝑒𝑑𝐶𝑣(𝑡+𝑖 ∣ 𝑡), forecasts the probability distribution of future
value 𝑐𝑣(𝑡+ 𝑖) at time 𝑡, such that 𝑃𝑟𝑒𝑑𝐶𝑣(𝑡+ 𝑖 ∣ 𝑡) ∶ 𝑃 (𝑐𝑣(𝑡+ 𝑖) = 𝑣𝑎𝑙𝑗 ) =
𝑝𝑗 , where 𝑝𝑗 ∈ [0, 1] and ∑𝑚𝑐𝑣

𝑗=1 𝑝𝑗 = 1. In multi-variable scenarios, we
consider each variable independently for prediction purposes. This pa-
per does not delve into specific prediction methodologies but requires
that predictions conform to the aforementioned probabilistic structure,
accommodating various problem-specific prediction techniques.
5 
Context prediction is a cornerstone of proactive self-adaptation,
though it faces challenges related to prediction accuracy, particularly
due to the inherent uncertainties in forecasting. Predictions are gener-
ally more accurate when made closer to the event, leveraging the most
recent data (Wang and Pazat, 2012). However, uncertainties, including
outliers, can compromise the reliability of new forecasts. To mitigate
this, we introduce an evidence theory-based method that integrates
historical predictions to enhance both the timeliness and accuracy of
forecasts. The choice of evidence theory is motivated by its ability
to represent prediction uncertainties through mass functions, thereby
improving the reliability of context predictions by aggregating evidence
over time.

5.2. Prediction fusion

We posit that the predictor operates with a prediction horizon of
ℎ. At any given moment 𝑡, it is capable of generating forecasts for
future contexts spanning from 𝑡 + 1 to 𝑡 + ℎ, represented as 𝑃𝑟𝑒𝑑𝐶𝑣(𝑡 +
1 ∣ 𝑡),… , 𝑃 𝑟𝑒𝑑𝐶𝑣(𝑡 + ℎ ∣ 𝑡). Traditionally, these forecasts are directly
utilized for analysis and planning. However, in uncertain environments,
reliance on a singular forecast can introduce substantial inaccuracies
or be compromised by sensor malfunctions, making the most recent
forecast unavailable. At such junctures, predictions from prior time
steps, such as those made at 𝑡−1 for contexts at 𝑡,… , 𝑡+ℎ−1, spanning
𝑃𝑟𝑒𝑑𝐶𝑣(𝑡+ 1 ∣ 𝑡− 1),… , 𝑃 𝑟𝑒𝑑𝐶𝑣(𝑡+ ℎ− 1 ∣ 𝑡− 1), become invaluable for
enhancing prediction accuracy.

To this end, we advocate for the application of evidence theory to
amalgamate historical predictions, as detailed in Table 1. For predicting



Z. Chen et al.

i
t
a

𝑃

𝑡
w
a
t
2

𝑃

𝑃

d
{
d
C

𝑃

𝑃

𝑃

t
i
c

,

g
e
v
c

𝐱

The Journal of Systems & Software 217 (2024) 112166 
the value of 𝑐𝑣(𝑡 + 𝑖), we designate the frame of discernment as 𝛺 =
{𝑐𝑣(𝑡 + 𝑖) = 𝑣𝑎𝑙1,… , 𝑐𝑣(𝑡 + 𝑖) = 𝑣𝑎𝑙𝑚𝑐𝑣

}. Each forecast, 𝑃𝑟𝑒𝑑𝐶𝑣(𝑡 + 𝑖 ∣ 𝑡),
s regarded as a mass function. Given the predictor’s horizon limit
o ℎ future periods, at time 𝑡, not all prior predictions remain valid,
s elucidated in Table 1. At 𝑡, predictions from 𝑡 − ℎ + 1 to 𝑡 are

considered. For the fused forecast at 𝑡 + 1, predictions from 𝑡 − ℎ + 1
to 𝑡 are amalgamated using the Dempster combination rule to form

̂𝑟𝑒𝑑𝐶𝑣(𝑡+1 ∣ 𝑡). This methodology is systematically applied to integrate
forecasts for subsequent times.

Nevertheless, predictors often grapple with uncertainties that may
yield predictions with substantial errors, a scenario referred to as the
conflicting evidence phenomenon. The conventional Dempster combi-
nation rule, as introduced in Section 3.1, might produce unsatisfactory
outcomes when encountering conflicting evidence. Thus, we employ
the discount Dempster combination rule that assigns a trust coefficient
𝛼𝑘 to each prediction 𝑃𝑟𝑒𝑑𝐶𝑣(𝑡+ 𝑖 ∣ 𝑡−𝑘), symbolized as 𝑃𝑟𝑒𝑑𝐶𝑣𝛼𝑘 (𝑡+ 𝑖 ∣
−𝑘) after adjustment. This adjustment is governed by Eqs. (8) and (9),
ith 𝛼𝑘 inversely proportional to the distance from the prediction point,
ligning with the premise that predictions become less reliable as the
emporal distance from the prediction point increases (Metzger et al.,
019; Wang and Pazat, 2012).

𝑟𝑒𝑑𝐶𝑣𝛼𝑘 ∶ 𝑃𝛼𝑘 (𝑐𝑣(𝑡 + 𝑖) = 𝑣𝑎𝑙𝑗 ) = 𝑝𝑗 ∗ 𝛼𝑘 (8)

𝑟𝑒𝑑𝐶𝑣𝛼𝑘 ∶ 𝑃𝛼𝑘 (𝑐𝑣(𝑡 + 𝑖) = 𝑣𝑎𝑙1 ∨ 𝑐𝑣(𝑡 + 𝑖) = 𝑣𝑎𝑙2∨

⋯ ∨ 𝑐𝑣(𝑡 + 𝑖) = 𝑣𝑎𝑙𝑚𝑐𝑣
) = 1 − 𝛼𝑘

(9)

In the context of the DARTSim, let us consider a context variable,
enoted as 𝑐𝑣𝑡𝑎𝑟, which has a binary value range 𝑉 𝑎𝑙𝑢𝑒𝑅𝑎𝑛𝑔𝑒𝑐𝑣𝑡𝑎𝑟 =
0, 1}, indicates the presence or absence of a target. The frame of
iscernment for 𝑐𝑣𝑡𝑎𝑟(𝑡 + 𝑖) is 𝛺 = {𝑐𝑣𝑡𝑎𝑟(𝑡 + 𝑖) = 0, 𝑐𝑣𝑡𝑎𝑟(𝑡 + 𝑖) = 1}.
onsider an example that the prediction for 𝑡+ 1 at 𝑡, 𝑡− 1 and 𝑡− 2 as:

𝑟𝑒𝑑𝐶𝑣𝑡𝑎𝑟(𝑡 + 1 ∣ 𝑡) ∶

𝑃 (𝑡𝑎𝑟(𝑡 + 1) = 0) = 0.35, 𝑃 (𝑡𝑎𝑟(𝑡 + 1) = 1) = 0.65

𝑟𝑒𝑑𝐶𝑣𝑡𝑎𝑟(𝑡 + 1 ∣ 𝑡 − 1) ∶

𝑃 (𝑡𝑎𝑟(𝑡 + 1) = 0) = 0.4, 𝑃 (𝑡𝑎𝑟(𝑡 + 1) = 1) = 0.6

𝑟𝑒𝑑𝐶𝑣𝑡𝑎𝑟(𝑡 + 1 ∣ 𝑡 − 2) ∶

𝑃 (𝑡𝑎𝑟(𝑡 + 1) = 0) = 0.45, 𝑃 (𝑡𝑎𝑟(𝑡 + 1) = 1) = 0.55

The result of this fusion is ̂𝑃 𝑟𝑒𝑑𝐶𝑣𝑡𝑎𝑟(𝑡 + 1 ∣ 𝑡) ∶ 𝑃 (𝑐𝑣𝑡𝑎𝑟(𝑡 + 1) = 0) =
0.227, 𝑃 (𝑐𝑣𝑡𝑎𝑟(𝑡 + 1) = 1) = 0.773, showing that by fusing the historical
predictions we are more confirming the conclusion that 𝑡𝑎𝑟(𝑡 + 1) = 1.

Further, if an incorrect prediction is obtained at 𝑡, i.e 𝑃𝑟𝑒𝑑𝐶𝑣𝑡𝑎𝑟(𝑡+1 ∣
𝑡) ∶ 𝑃 (𝑐𝑣𝑡𝑎𝑟(𝑡 + 1) = 0) = 0.8, 𝑃 (𝑐𝑣𝑡𝑎𝑟(𝑡 + 1) = 1) = 0.2. The final fusion
result will be hugely impacted: ̂𝑃 𝑟𝑒𝑑𝐶𝑣𝑡𝑎𝑟(𝑡 + 1 ∣ 𝑡) ∶ 𝑃 (𝑐𝑣𝑡𝑎𝑟(𝑡 + 1) =
0) = 0.686, 𝑃 (𝑐𝑣𝑡𝑎𝑟(𝑡 + 1) = 1) = 0.314. Using the discount Dempster
combination rule is an effective way to improve this situation. The
exact result is related to the value of the discount factor 𝛼. For example,
when 𝛼 = 0.8, 𝑃 (𝑐𝑣𝑡𝑎𝑟(𝑡 + 1) = 1) = 0.403.

6. Decision-making based on extended stochastic MPC

In this section, we outline our approach to making adaptation
decisions through an enhanced version of MPC, designed specifically
for proactive adaptation strategies. We start by clarifying the terms and
notations related to MPC used in this paper and then introduce our
planning method.

Our discussion on stochastic MPC is structured to first introduce a
latency-aware system model. This model updates MPC by considering
the time delays in adaptation actions, making it more suited for proac-
tive adjustments. Following this, we leverage the concept of technical
debt as a metaphorical framework to describe the utility derived from
adaptation efforts, thereby formulating a holistic control objective that
encapsulates both immediate and deferred adaptation benefits and

costs. Finally, we address how to manage uncertainties in the system’s

6 
context by framing it as a stochastic control problem. This method
ensures our decision-making process is not only grounded in the robust
analytical framework of MPC but also innovatively augmented and
practical to meet the evolving demands of proactive self-adaptation.

6.1. Notations in MPC-based proactive adaptation

In Section 3.3, we delineate the foundational structure of the system
model within MPC, encapsulated by Eq. (6). This equation elucidates
the dynamic interplay between the subsequent system state 𝐱(𝑡 + 1),
its preceding state 𝐱(𝑡), control inputs 𝐮(𝑡), and the correlation of
he system output 𝐲(𝑡) with both the system state 𝐱(𝑡) and control
nputs 𝐮(𝑡). Within the context of self-adaptive software systems, the
omponents of Eq. (6) are conceptualized as follows:

• 𝑦 represents the performance indicators that are directly related to
the system goals. 𝐲(𝑡) = (𝑦1(𝑡),… , 𝑦𝑁𝑦

(𝑡)), 𝑁𝑦 indicates the number
of performance indicators.

• 𝑥 represents the system configurations that are affected by control
parameters and determine the performance indicators. 𝐱(𝑡) =
(𝑥1(𝑡),… , 𝑥𝑁𝑥

(𝑡)), 𝑁𝑥 indicates the number of configuration items.
• 𝑢 represents the control parameters that can be modified to alter

the behavior or configuration of the system. 𝐮(𝑡) = (𝑢1(𝑡),… , 𝑢𝑁𝑢
(𝑡))

𝑁𝑢 indicates the number of control parameters.

Prior to addressing the concept of latency, it is imperative to inte-
rate contextual factors into the system model. Employing the notation
stablished in Section 5, we represent the collective value of context
ariables at time 𝑡 using the bold notation 𝐜𝐯(𝑡). This inclusion of
ontext variables enriches the system model, now depicted as Eq. (10).

(𝑡 + 1) = 𝑓 (𝐱(𝑡),𝐮(𝑡), 𝐜𝐯(𝑡))
𝐲(𝑡) = 𝑔(𝐱(𝑡), 𝐜𝐯(𝑡))

(10)

For example, Using the above notations, the DARTSim case can be
represented as:

• Performance indicators (𝑦): 𝐲 = (𝑦𝑡𝑎𝑟, 𝑦𝑡ℎ𝑟), 𝑦𝑡𝑎𝑟 ∈ [0, 1], 𝑦𝑡ℎ𝑟 ∈ [0, 1],
indicates the probability of the UAVs detecting a target and the
probability of a threat has detected the UAVs.

• Configurations (𝑥): 𝐱 = (𝑥𝑎, 𝑥𝑓 , 𝑥𝑒), 𝑥𝑎 = [0, 𝑥𝑎,𝑚𝑎𝑥], 𝑥𝑓 = [0, 1], 𝑥𝑒 =
{0, 1}. Where 𝑥𝑎, 𝑥𝑓 , 𝑥𝑒 indicate three configurations. 𝑥𝑎 indicates
the UAVs’ flight altitude, with 𝑥𝑎,𝑚𝑎𝑥 being the highest. 𝑥𝑓 indi-
cates the UAVs’ formation, with 0 to 1 representing loose to tight.
𝑥𝑒 indicates whether the ECM is on or off.

• Control parameters (𝑢): 𝐮 = (𝑢𝑎, 𝑢𝑓 , 𝑢𝑒), indicate the adjustment to
the corresponding configuration.

• Context variables (𝑐𝑣): 𝐜𝐯 = (𝑐𝑣𝑡𝑎𝑟, 𝑐𝑣𝑡ℎ𝑟), 𝑐𝑣𝑡𝑎𝑟 ∈ {0, 1}, 𝑐𝑣𝑡ℎ𝑟 ∈
{0, 1}, indicates whether the target and threat exist.

Both the context and system configuration will affect the system’s
performance. The primary objective of adaptation is then to get to the
most suitable configuration by applying control parameters when the
context changes. This ideal configuration optimizes the performance
indicator, aligning it with the desired goals.

The input of the planner is the context prediction and the current
system configuration, while the output is the adaptation strategy, a
sequence of control parameters, i.e. 𝐴𝑆(𝑡, ℎ) = ⟨𝐮(𝑡),… ,𝐮(𝑡 + ℎ − 1)⟩.

6.2. Latency-awareness in MPC

In this subsection, we expand upon the state–space model typically
employed in MPC to accommodate adaptation latency. This enhance-
ment enables more precise system predictions during decision-making,
optimizing outcomes and preventing premature or untimely proactive

adaptations.



Z. Chen et al.

a
m
F
s
i

i
m
n
i
a

d
c

𝑃
a
a
f
a
o

𝐽

6

a
i
d
w
p
t
n
a
f

The Journal of Systems & Software 217 (2024) 112166 
In self-adaptive software systems, various types of latency impact
the efficiency and responsiveness of adaptations (Keller and Mann,
2020). These include delays in monitoring, analysis, planning, exe-
cution of adaptations, and the manifestation of adaptation effects.
Particularly, execution latency (𝑙𝐸) and the latency for the effects of
daptation to become manifest (𝑙𝐸2) are directly relevant to the system
odel, necessitating their incorporation to foster latency-aware MPC.

or simplicity, we initially consider latency in the context of a singular
ystem configuration 𝑥 and control parameter 𝑢, though the approach
s scalable to multiple configurations and parameters.

𝑙𝐸 : Execution latency in MPC-based adaptation refers to the delay
n adjusting the control parameters. It is manifested in the system
odel by the fact that the currently planned control parameters do
ot affect the system configuration immediately, but require some
nitiation time, i.e., 𝑥(𝑡 + 1) = 𝑓 (𝑥(𝑡), 𝑢(𝑡 − 𝑙)), where 𝑙 ≥ 1 signifies

latency of 𝑙 time steps. The specific latency value 𝑙 is determined
by system characteristics. For instance, if activating the ECM requires
a certain duration, the control parameter 𝑢𝑒 will experience a delay
before affecting the system configuration 𝑥𝑒.

To accommodate this latency within our system model, we intro-
uce auxiliary states 𝑥1,… , 𝑥𝑙, which facilitate the transmission of past
ontrol actions 𝑢(𝑡 − 𝑙) to the system state 𝑥𝑙(𝑡), and then affect the
𝑥(𝑡 + 1). The augmented system model, incorporating these auxiliary
states, is formalized as Eq. (11).

𝑥(𝑡 + 1) = 𝑓 (𝑥(𝑡), 𝑥𝑙(𝑡), 𝑐𝑣(𝑡))

𝑥𝑙(𝑡 + 1) = 𝑥𝑙−1(𝑡)

…

𝑥1(𝑡 + 1) = 𝑢(𝑡)

(11)

By transferring the value of 𝑢(𝑡 − 𝑙) to 𝑥𝑙(𝑡) and integrating the
original system state vector 𝐱 with auxiliary states 𝑥1,… , 𝑥𝑙 into an
expanded state vector 𝐱 = (𝐱, 𝑥1,… , 𝑥𝑙), we encapsulate this rela-
tionship in a new function 𝑓 . This formulation allows the extended
system model to encapsulate execution latency 𝑙𝐸 within the framework
of a generalized model, as represented in Eq. (12). Thus, the system
model employed in subsequent sections adheres to this original, yet
augmented, representation.

𝐱(𝑡 + 1) = 𝑓 (𝐱(𝑡),𝐮(𝑡), 𝐜𝐯(𝑡))
𝐲(𝑡) = 𝑔(𝐱(𝑡), 𝐜𝐯(𝑡))

(12)

𝑙𝐸2: This latency captures the delay in realizing the full effect of an
adaptation within the system’s dynamics. Unlike static models where
system states directly correlate with control parameters, the dynamic
model illustrates how the system state evolves over time due to control
parameters. For example, for a linear system 𝑥(𝑡 + 1) = 𝑥(𝑡) + 𝑏 ∗ 𝑢(𝑡),
the latency 𝑙𝐸2 can be reflected by the coefficients 𝑏. A smaller value
of 𝑏 implies that the control parameters induce slower adjustments in
the system state, resulting in increased latency. The original state space
model in MPC is a dynamic model that already takes into account
𝑙𝐸2. For instance, adjusting the control parameter 𝑢𝑎 does not instanta-
neously elevate the UAVs’ altitude 𝑥𝑎 to the desired state but introduces
a delay.

The derivation of the system model can be approached from two
perspectives: The first leverages domain knowledge to analytically
model the software system’s behavior, such as employing a queuing
network model for a web service (Incerto et al., 2017). The second
perspective treats the system as a black box, utilizing system iden-
tification techniques to empirically derive the model (Ljung, 1998).
This approach initially hypothesizes a model structure, followed by the
collection of input and output data through simulations or preliminary
runs, to subsequently refine the model to accurately represent the

system dynamics. a

7 
6.3. Comprehensive objective function based on technical debt

The core principle guiding the formulation of control objectives in
MPC is to align the system’s output closely with predefined setpoints
while minimizing associated control costs. Technical debt underscores
the importance of striking a balance between costs and benefits, con-
sidering both short-term and long-term implications. This philosophy
aligns well with the objective of optimizing long-term performance in
proactive adaptation. By embracing the technical debt metaphor, we
adopt a nuanced approach to systematically defining control objectives,
thereby enhancing decision-making capabilities.

Incorporating insights from relevant literature (Chen et al., 2018)
and the technical debt metaphor, we employ the notions of Principal,
Interest, and Revenue to evaluate the utility of an adaptation strategy
𝐴𝑆(𝑡, ℎ). Our definitions are as follows:

• Principal: 𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 = 𝑃 (𝐮(𝑡)), is the overhead incurred due to
the execution of the adaptation strategy at 𝑡. The overhead of
execution is the sum of all the control parameters, 𝑃 (𝐮(𝑡)) =
∑𝑁𝑢

𝑖=1 𝑢𝑖(𝑡) ∗ 𝑐𝑜𝑠𝑡𝑢𝑖 . For instance, in the DARTSim scenario, the
principal encompasses the costs for adjustments in altitude and
formation, assuming no cost for ECM adjustments.

• Interest: Expressed as 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡 = 𝐼(𝐱(𝑡)), captures the ongoing
costs associated with the system’s state post-adaptation. These
costs vary with the system’s configuration and accumulate over
time. The calculation involves the product of each configuration’s
value and its respective unit cost, 𝐼(𝐱(𝑡)) = ∑𝑁𝑥

𝑖=1 𝑥𝑖(𝑡) ∗ 𝑐𝑜𝑠𝑡𝑥𝑖 . In
DARTSim, interest reflects ECM costs, assuming a uniform cost
across different altitudes and formations.

• Revenue: Denoted as 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 = 𝑅(𝐲(𝑡)), quantifies the bene-
fits derived from executing the adaptation strategy. It assesses
goal achievement by comparing the deviation between post-
execution performance indicators 𝑦𝑖 and their reference values
𝑟𝑒𝑓𝑦𝑖 , thereby computing the revenue, 𝑅(𝐲(𝑡)) =

∑𝑁𝑦
𝑖=1(𝑦𝑖(𝑡) −

𝑟𝑒𝑓𝑦𝑖 ) ∗ 𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑦𝑖 . Here, ‘revenue’ also accounts for penalties
incurred for unmet goals. In the DARTSim example, revenue
includes the advantages of detecting targets and the penalties for
encountering threats. By assigning different revenues to different
performance indicators, it is possible to make system emphasize
specific goals and adopt more conservative or more aggressive
behavior.

The net utility of an adaptation strategy is thus evaluated as 𝑅𝑒𝑣𝑒𝑛𝑢𝑒−
𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 − 𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡. Taking into account the control horizon ℎ, we
rticulate the objective function as outlined in Eq. (13), facilitating
comprehensive assessment of adaptation strategies within an MPC

ramework. In this way, we express the ability of the system to reliably
chieve its goals using net utility, thus providing a basis for subsequent
ptimal control.

(𝐴𝑆(𝑡, ℎ), 𝐱(𝑡)) =
ℎ
∑

𝑖=1
𝑅(𝐲(𝑡 + 𝑖)) − 𝑃 (𝐮(𝑡 + 𝑖 − 1)) − 𝐼(𝐱(𝑡 + 𝑖)) (13)

.4. Stochastic control logic

In the preceding subsections, we augmented MPC with latency-
ware capabilities and established a systematic approach for formulat-
ng the objective function. Yet, our discussions hitherto have presumed
eterministic contexts, overlooking the inherent uncertainty associated
ith context predictions. Sole reliance on the most probable context
rediction disregards the potential for inaccuracies, potentially leading
o the generation of adaptation strategies that may falter under erro-
eous predictions. To mitigate this, our study adopts a stochastic MPC
pproach for adaptation planning, aiming to encompass all conceivable
uture contexts. This approach is intended to forge a more reliable

daptation strategy capable of addressing uncertainty effectively.



Z. Chen et al.

l
i

t
f

a
p
t
d

The Journal of Systems & Software 217 (2024) 112166 
We define a context scenario at 𝑡 as a possible context variable
taking values from 𝑡 + 1 to 𝑡 + ℎ, 𝑠𝑐𝑗 (𝑡) = ⟨𝐜𝐯𝑗 (𝑡 + 1),… , 𝐜𝐯𝑗 (𝑡 + ℎ)⟩, 𝑗 =
1,… , 𝑁𝑠𝑐 , 𝑁𝑠𝑐 indicates the number of scenarios. Follow the assumption
of the previous section that there is only one context variable 𝑐𝑣. Then a
scenario 𝑠𝑐𝑗 (𝑡) can be expressed as 𝑠𝑐𝑗 (𝑡) = ⟨𝑣𝑎𝑙𝑗𝑡+1 ,… , 𝑣𝑎𝑙𝑗𝑡+ℎ ⟩, 𝑣𝑎𝑙𝑗𝑡+𝑖 ∈
𝑉 𝑎𝑙𝑢𝑒𝑅𝑎𝑛𝑔𝑒𝑐𝑣. And, given the context prediction ̂𝑃 𝑟𝑒𝑑𝐶𝑣(𝑡 + 𝑖 ∣ 𝑡), 𝑖 =
1,… , ℎ, the probability of this context scenario can be calculated using
Eq. (14).

𝑝𝑠𝑐𝑗 (𝑡) =
ℎ
∏

𝑖=1
𝑃 (𝑐𝑣(𝑡 + 𝑖) = 𝑣𝑎𝑙𝑗𝑡+𝑖 ) (14)

The utility of an adaptation strategy is quantified as the weighted
sum of utilities across all possible context scenarios, as detailed in
Eq. (15).

𝐽𝐸 (𝐴𝑆(𝑡, ℎ), 𝐱(𝑡)) =
𝑁𝑠𝑐
∑

𝑠𝑐𝑗 (𝑡)
𝑝𝑠𝑐𝑗 (𝑡) ∗ 𝐽 (𝐴𝑆(𝑡, ℎ), 𝐱(𝑡)) (15)

The formulation of the stochastic control problem for proactive
adaptation at time 𝑡 is given by:

𝑚𝑎𝑥
𝐴𝑆(𝑡,ℎ)

𝐽𝐸 (𝐴𝑆(𝑡, ℎ), 𝐱(𝑡))

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐱(𝑖 + 1) = 𝑓 (𝐱(𝑖),𝐮(𝑖), 𝐜𝐯𝑗 (𝑖))
𝐲(𝑖) = 𝑔(𝐱(𝑖), 𝐜𝐯𝑗 (𝑖))
𝐮𝑚𝑖𝑛 ≤ 𝐮(𝑖) ≤ 𝐮𝑚𝑎𝑥,
𝐱𝑚𝑖𝑛 ≤ 𝐱(𝑖) ≤ 𝐱𝑚𝑎𝑥,
𝑖 = 𝑡, 𝑡 + 1, 2,… , 𝑡 + ℎ − 1,

𝑗 = 1,… , 𝑁𝑠𝑐 ,

(16)

The number of scenarios grows exponentially with respect to the
prediction horizon. To keep the computational demands feasible, we
use the uncertain horizon ℎ𝑢. It means applying the probabilities of
context variables only for the initial ℎ𝑢 steps while assuming constant
values for these variables over the remaining ℎ − ℎ𝑢 duration. Con-
sequently, this reduces the total number of contextual scenarios 𝑁𝑠𝑐 ,
thereby easing computational burdens.

There are many existing solvers to tackle this optimization problem,
such as IBM CPLEX Optimizer, CASADI, and Optimization Toolbox
in Matlab. Minimizing the objective function is usually the default
setting in these solvers, so it may be necessary to take the opposite
of the previously defined objective function in order to convert it
to a minimization problem when solving. After the planner solves
the solution 𝐴𝑆(𝑡, ℎ) of the above optimization problem, according to
the receding horizon principle, only the first item is applied to the
software system, and the subsequent items are discarded. This principle
is pivotal as it compensates for inaccuracies in future state estimations,
with the planner recalibrating the optimization problem based on the
latest system state at subsequent intervals to derive new solutions. This
iterative process also diminishes the impacts of uncertain horizons. In
practical scenarios, the planner may fail to have a solution by various
factors such as constrained solution time, in which case previously
computed solutions may serve as fallbacks.

7. Experiments

Our research conducts extensive experiments to assess the effi-
cacy of our proposed framework, centering on three pivotal research
questions:

RQ1: Does the integration of Evidence Theory prediction fusion
enhance the accuracy of context predictions and, by extension, the
effectiveness of proactive adaptation strategies?

RQ2: How effective is our Stochastic Model Predictive Control
(SMPC)-based planning approach in managing system adaptations?

RQ3: What is the computational overhead associated with our pro-

posed method?

8 
Table 2
Default experiment setting.

Name Type Value

failure rate predictor 0.15
𝜇, 𝜎 predictor 0.8,0.01
discount factor 𝛼 predictor 0.8
prediction horizon ℎ predictor 5
uncertain horizon ℎ𝑢 planner 3
𝑥𝑎,𝑚𝑎𝑥 system model 5
latency 𝑙𝐸 of 𝑢𝑒 system model 1
𝑐𝑜𝑎 system model 2
𝑐𝑜𝑓 system model 0.5
𝑐𝑜𝑠𝑡𝑢𝑎 utility model 1
𝑐𝑜𝑠𝑡𝑢𝑓 utility model 0.5
𝑐𝑜𝑠𝑡𝑢𝑒 utility model 0.5
𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑦𝑡𝑎𝑟 utility model 20
𝑟𝑒𝑣𝑒𝑛𝑢𝑒𝑦𝑡ℎ𝑟 utility model −15

7.1. Experiment case: DARTSim

For the evaluation, we utilize DARTSim, with detailed descriptions
in Sections 3.4 and 6.1. To enable flexible adjustments of the predictor
and prediction fusion, as well as to fine-tune control parameters within
the MPC framework, we developed a new simulation environment
tailored for DARTSim.

Our experimental setup includes simulating an uncertain forward-
looking sensor that generally provides accurate predictions but is sub-
ject to two main uncertainties: an increase in prediction error for
extended ranges and a low probability risk of sensor malfunction
leading to incorrect predictions. For instance, under normal conditions,
the sensor’s prediction (𝑡𝑎𝑟𝑔𝑒𝑡𝑝𝑟𝑜𝑏) follows a Gaussian distribution with
mean 𝜇 (e.g., 𝜇 = 0.8) and standard deviation 𝜎 (e.g., 𝜎 = 0.01). For
onger-range predictions, adjustments are made to use a reduced 𝜇 and
ncreased 𝜎, whereas in malfunction scenarios, 𝜇 is adjusted to 1 − 𝜇.

The latencies in the dynamics system model are as follows: (i)
he control parameters 𝑢𝑎, 𝑢𝑓 are linearly adjusted for altitude and
ormation with 𝑙𝐸2 latency, i.e., 𝑥𝑎(𝑡 + 1) = 𝑥𝑎(𝑡) + 𝑐𝑜𝑎 ∗ 𝑢𝑎(𝑡), where
𝑐𝑜𝑎 is the coefficient to reflect the latency, the range of the value of 𝑢𝑎
and 𝑢𝑓 are both [0, 1]. (ii) 𝑢𝑒 directly changes 𝑥𝑒 with 𝑙𝐸 latency, i.e,
𝑥𝑒(𝑡+1) = 𝑢𝑒(𝑡− 𝑙). 𝑢𝑒’s legal value is {0, 1}, and we round the fractional
part in the practical calculation.

The probability of target detection is computed as 𝑦𝑡𝑎𝑟 = 𝑐𝑣𝑡𝑎𝑟 ∗
𝑚𝑎𝑥(0,𝑟𝑆−𝑥𝑎)

𝑟𝑆
((1 − 𝑥𝑓 ) +

𝑥𝑓
𝑓𝑓𝑎𝑐𝑡𝑜𝑟

)((1 − 𝑥𝑒) +
𝑥𝑒

𝑒𝑓𝑎𝑐𝑡𝑜𝑟
), where 𝑟𝑆 represents the

maximum detection range, 𝑥𝑎, 𝑥𝑓 , and 𝑥𝑒 are the configuration values,
nd 𝑓𝑓𝑎𝑐𝑡𝑜𝑟 and 𝑒𝑓𝑎𝑐𝑡𝑜𝑟 are the coefficients influencing the detection
robability under tight formation and active ECM conditions, respec-
ively. This formula is also applied to calculate the probability of being
etected, with adjustments to 𝑟𝑆 , 𝑓𝑓𝑎𝑐𝑡𝑜𝑟, and 𝑒𝑓𝑎𝑐𝑡𝑜𝑟 as necessary.

For SMPC planning, we employ the do-mpc package (Fiedler et al.,
2023), which utilizes CasADi (Andersson et al., 2019) and IPOPT1

as the optimization problem solver. The default parameters for our
experiments are detailed in Table 2, providing a structured basis for
evaluating the proposed framework’s performance in various scenarios.

As for metrics to express the effectiveness of the adaptation meth-
ods. We evaluate the performance of the system using the metric of util-
ity value defined in Section 6.3 (𝑈𝑡𝑖𝑙𝑖𝑡𝑦 = 𝑅𝑒𝑣𝑒𝑛𝑢𝑒−𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙−𝐼𝑛𝑡𝑒𝑟𝑒𝑠𝑡),
which provides a comprehensive indication of the goal achievement. In
addition, we specifically calculate the probability of being detected as
a direct reliability metric to demonstrate for special tasks where threat
detection is considered a failure.

1 https://coin-or.github.io/Ipopt/index.html

https://coin-or.github.io/Ipopt/index.html


Z. Chen et al. The Journal of Systems & Software 217 (2024) 112166 
7.2. Experiment design

RQ1:. For RQ1, our objective is to determine the efficacy of integrating
historical predictions through evidence theory in improving predic-
tion accuracy and to quantify this improvement. Given the lack of
existing methods for direct benchmarking, we adopt two alternative
fusion strategies: (1) directly averaging historical predictions, and (2)
relying solely on the most recent predictions, a methodology frequently
utilized in the relevant literature. We adjust variables such as failure
probabilities and predictor parameters (𝜇, 𝜎) to assess their influence
on prediction accuracy. Considering the predictor outputs probabilities
for each potential outcome rather than a singular predicted value,
conventional metrics like precision and recall may not adequately
capture the nuances of this method. Therefore, we use the accuracy
score which is calculated as follows: if the actual value of the context
variable 𝑐𝑣 is 𝑣𝑎𝑙𝑎𝑐𝑡𝑢𝑎𝑙, the accuracy score is 𝑠𝑐𝑜𝑟𝑒 = 𝑃 (𝑐𝑣 = 𝑣𝑎𝑙𝑎𝑐𝑡𝑢𝑎𝑙).

Furthermore, we aim to investigate whether enhancements in pre-
diction accuracy translate into more effective adaptation outcomes. To
this end, we construct a simulated scenario populated with randomly
generated targets and threats. Within this environment, we deploy an
adaptation mechanism that leverages the most current prediction for
comparative analysis. This allows us to explore the practical implica-
tions of improved prediction accuracy on the overall adaptability and
responsiveness of the system in dynamic and uncertain conditions.

RQ2:. For RQ2, our evaluation of the proposed approach’s effective-
ness is twofold. Initially, we assess whether the overall utility and
reliability that our method achieved surpasses that of the classical MPC-
based planning method. To this end, we simulate various contexts and
compare our approach against the CobRA approach from Angelopoulos
et al. (2016). We implemented this method in the same way as in
the Moreno et al. (2017) to fit our experimental conditions. In addition,
we ablate our method to implement two other comparison methods:
one without the latency-aware system model and another without the
implementation of stochastic MPC.

Subsequently, we examine the SASO properties, namely stability,
accuracy (steady-state error), settling time, and overshooting, as out-
lined by Hellerstein et al. (2004). They are commonly used metrics in
control theory-based adaptation methods. Given the dynamic nature of
self-adaptive systems, which continually adjust in response to evolving
contexts, calculating SASO metrics directly may not be feasible. There-
fore, we design a specific experiment where context alterations occur
at a distinct point in time, allowing us to test the system’s adaptive
capabilities both at initial setup (Situation 1) and upon context shifts
(Situation 2). The SASO metrics are defined as follows Moreno et al.
(2017):

• Stability indicates whether the system output stabilizes to a con-
stant value over time, representing a binary evaluation of conver-
gence.

• Accuracy pertains to how closely the system’s performance in-
dicators match the predefined setpoints upon stabilization. In
the context of DARTSim, the accuracy for target detection is
measured by the deviation from the ideal detection probability,
calculated as ∣ 1 − 𝑦𝑡𝑎𝑟 ∣, with the setpoint of 𝑦𝑡𝑎𝑟 being 1.
Conversely, for the probability of threat detection, accuracy is
measured by ∣ 0 − 𝑦𝑡ℎ𝑟 ∣, aligning with the goal of minimizing
threat detection.

• Settling time denotes the duration required for the system to
achieve a stable state.

• Overshoot is linked to performance indicators and quantifies the
peak deviation during the adjustment phase, employing the same
error metrics as defined for Accuracy.

RQ3:. For RQ3, our objective is to evaluate the runtime applicability
of our approach, focusing on its computational performance. We also
investigate how the prediction horizon (ℎ), the uncertainty horizon
(ℎ𝑢), and the number of possible values for the context variable impact

the computational time required for execution.

9 
Fig. 3. Results of adaptation using different prediction methods.

7.3. Results

RQ1:. Our analysis for RQ1 regarding prediction accuracy, presented
in Tables 3, 4, and 5, employs default settings with a 0.15 failure
probability, predictor parameters 𝜇 = 0.8, 𝜎 = 0.01, and a prediction
horizon ℎ = 5. For this evaluation, we generated random contexts over
5000 time steps for each scenario, documenting the mean and standard
deviation of the prediction accuracy scores. The Fusion row highlights
the performance of our method utilizing evidence theory for prediction
fusion.

Table 3 illustrates a decline in prediction accuracy scores across all
methods as the forecast period lengthens, attributable to the intrinsic
decrease in predictor reliability over longer future intervals and the
diminished availability of historical predictions for the Average and
Fusion approaches. Notably, by the 5th time step ahead, a convergence
in accuracy scores among all methods is observed, as a result of the
scarcity of historical data for prediction fusion. This observation em-
phasizes the value of integrating extensive historical data in evidence
theory-based prediction fusion to improve accuracy. Consequently, the
data in Tables 4 and 5 are derived from one-step-ahead predictions to
ensure sufficient historical information is available. Moreover, given
the MPC’s iterative recalculations at each subsequent time step to
counteract future prediction inaccuracies, one-step-ahead forecasts are
particularly crucial.

Table 4 reveals our method’s superior performance in maintaining
high prediction accuracy scores across different failure probabilities.
Although accuracy diminishes as failure rates increase for all methods,
our approach sustains higher accuracy levels. The averaging method,
which directly incorporates erroneous predictions, yields the lowest ac-
curacy. Sole reliance on the most recent prediction performs better than
averaging but suffers from higher variability in accuracy, particularly
when the latest prediction is incorrect.

Table 5 demonstrates that predictor configurations with higher 𝜇
and lower 𝜎 values achieve better accuracy, as expected. Our method
particularly improves accuracy with predictors of lower inherent ac-
curacy, showcasing its effectiveness in enhancing prediction reliability
under various conditions.

To compare the utility values derived from the two approaches,
namely prediction fusion and the latest predicted values, we generated
50 sets of contexts randomly. Each set spans a duration of 20 time steps.
The results of this comparison are illustrated in Fig. 3. We conduct
the Wilcoxon signed-rank test on the results 𝑈𝐹𝑢𝑠𝑖𝑜𝑛 and 𝑈𝐿𝑎𝑡𝑒𝑠𝑡, which
is a non-parametric statistical hypothesis test for paired non-normally
distributed data. The null hypothesis 𝐻0 is that the two paired utility
data come from the same distribution, 𝑈𝐹𝑢𝑠𝑖𝑜𝑛 − 𝑈𝐿𝑎𝑡𝑒𝑠𝑡 is symmetric
about zero. One-sided alternative hypothesis 𝐻1 is that they come from
the different distributions and 𝑈𝐹𝑢𝑠𝑖𝑜𝑛 − 𝑈𝐿𝑎𝑡𝑒𝑠𝑡 is stochastically greater
than a distribution symmetric about zero. The statistic of the Wilcoxon



Z. Chen et al.

r
t
o
i
m
a

R
p
d
T
T
a
t
M
a
i
t
o

t
E

The Journal of Systems & Software 217 (2024) 112166 
Table 3
Prediction accuracy score for different time steps ahead.

Method Timestep 1 Timestep 2 Timestep 3 Timestep 4 Timestep 5

avg std avg std avg std avg std avg std

Average 0.662 0.074 0.654 0.079 0.647 0.088 0.641 0.103 0.633 0.141
Latest 0.693 0.194 0.677 0.181 0.660 0.166 0.649 0.150 0.633 0.141
Fusion 0.881 0.139 0.828 0.149 0.762 0.148 0.687 0.138 0.633 0.141
Table 4
Prediction accuracy score of different failure rate.

Method Failure Rate 0.05 Failure Rate 0.1 Failure Rate 0.15 Failure Rate 0.2 Failure Rate 0.3

avg std avg std avg std avg std avg std

Average 0.706 0.048 0.683 0.065 0.662 0.074 0.639 0.085 0.638 0.083
Latest 0.747 0.121 0.715 0.172 0.693 0.194 0.668 0.219 0.666 0.220
Fusion 0.946 0.062 0.912 0.108 0.881 0.139 0.837 0.182 0.836 0.178
Table 5
Prediction accuracy score of different predictor parameters 𝜇, 𝜎.

Method 𝜇, 𝜎 = (0.8, 0.05) 𝜇, 𝜎 = (0.8, 0.01) 𝜇, 𝜎 = (0.9, 0.05) 𝜇, 𝜎 = (0.9, 0.01)

avg std avg std avg std avg std

Average 0.659 0.099 0.662 0.074 0.720 0.119 0.724 0.103
Latest 0.696 0.204 0.693 0.194 0.763 0.267 0.761 0.266
Fusion 0.859 0.185 0.881 0.139 0.908 0.172 0.921 0.145
signed-rank test is 1240 with a 𝑝-value of 3.82e−12. Hence, we would
eject the null hypothesis at a confidence level of 0.05, concluding
hat there is an improvement in the utility. We did the same test
n the probability of being detected results, which again showed an
mprovement. This demonstrates the ability of prediction fusion to help
itigate prediction uncertainty and thus improve the effectiveness of

daptation.

Q2:. Furthermore, to evaluate the general effectiveness of our ap-
roach in contrast to the classical MPC-based method, we again ran-
omly generated 50 sets of contexts with a duration of 20 time steps.
he results obtained from these simulations are summarized in Table 6.
he table outlines the utility values and probability of being detected
ssociated with our method, the approach excluding stochastic MPC,
he method omitting the latency-aware system model, and the classical
PC method devoid of both enhancements. This structured analysis

ims to elucidate the respective contributions of stochastic model-
ng and latency awareness to the overall performance and reliability,
hereby validating the efficacy of our method under a broad spectrum
f operational conditions.

Consistent with our prior experimental procedures, we conducted
he Wilcoxon signed-rank test to compare the three methodologies.
mploying identical null (𝐻0) and alternative hypotheses (𝐻1), the

tests conclusively rejected the null hypothesis at a 0.05 confidence
level, with p-values of 1.81e−12, 8.88e−16, and 2.93e−14, respec-
tively. This statistically significant outcome underscores the substantial
improvement in utility values achieved through our approach.

Analysis of the experimental data reveals that the median utility
value is notably higher when employing the planning method with the
latency-aware system model. And regarding reliability, our method also
achieves the lowest probability of being detected. This improvement
is attributed to the model’s capacity to more accurately predict future
system states, facilitating more effective control decisions. Since in the
default experimental setup we assign a higher reward for detecting
a target compared to the penalty for being detected, the system’s
behavior tends to be more adventurous in detecting more targets.
Furthermore, the distribution of utility values from our method ex-
hibited the lowest standard deviation, with the least favorable utility
values considerably surpassing those derived from alternative meth-
ods. This superior performance is not only due to the latency-aware

system model but also to the stochastic MPC’s comprehensive scenario

10 
consideration, ensuring that planning decisions remain robust against
uncertainties, including erroneous predictions.

To further investigate the robustness of our findings against ex-
perimental conditions, we varied the utility model’s parameters—
specifically, the rewards for target detection and penalties for threat
detection—and compared the effects of our method against the classical
MPC approach. This examination was conducted within the same
experimental framework of 50 randomly generated context sets. As
illustrated in Fig. 4, we assess the average differential in utility values
between our method and the classical MPC approach. The utility
metrics remained positive across all configurations, with the discrep-
ancy expanding in scenarios where the rewards/penalties were more
substantial. And in the Table 7, we show the results for the proba-
bility of being detected under different utility settings. The values in
the header row (5, 30),… , (30, 5) represent target revenue and threat
penalty respectively. Again, our approach achieves better results, i.e., a
lower probability of being detected. Moreover, we can see that as
the penalty increases, the probability of being detected decreases,
suggesting that the value of the utility model can be adjusted to allow
the system to choose more conservative behaviors to improve the
success rate in the specific task. These results affirm that variations
in the experimental setup do not detract from our initial conclusions,
reinforcing the efficacy of our approach across a diverse range of utility
settings.

As for the second part, Fig. 5 delineates the experimental outcomes
in a specific context, comparing our planning method (denoted as ‘‘1’’
with star notation) against the classical MPC-based planning method
(denoted as ‘‘2’’ with triangle notation). The scenario assumes that
the first ten regions are conditioned with 𝑡𝑎𝑟𝑔𝑒𝑡 = 0, 𝑡ℎ𝑟𝑒𝑎𝑡 = 1,
and transitions to 𝑡𝑎𝑟𝑔𝑒𝑡 = 1, 𝑡ℎ𝑟𝑒𝑎𝑡 = 0 in the 11th region and
remains until the end. The SASO properties utilizing our method are
detailed in Table 8. Through the course of the experiment, it is observed
that the SMPC-based planning adeptly aligns the system’s performance
indicators with the predefined setpoints. Nonetheless, it is imperative to
recognize that MPC problems commonly encompass multiple outputs,
each with distinct reference setpoints, necessitating a balanced trade-
off in the overall objective function that may not achieve optimization
across all performance indicators.

A notable observation was that the settling time metric under
Situation 1 did not exhibit optimal performance, attributable to the

prediction inaccuracies. Within the stochastic MPC computation, the



Z. Chen et al.

T
S

i
s
c
o
v
s

t
d
p
a
a
o
a
w
e
e
a

The Journal of Systems & Software 217 (2024) 112166 
Table 6
Statistics on results of 4 approaches.

Method Utility Probability

Avg Std Max Median Min Avg Std

Ours 86.06 41.22 211.40 88.86 −0.18 0.63 0.11
Without SMPC 64.94 47.35 206.91 75.19 −48.98 0.81 0.15
Without latency-aware 60.97 45.18 190.05 64.44 −38.88 0.76 0.14
Classical MPC 56.09 45.48 180.89 57.84 −28.36 0.79 0.12
Table 7
Statistics on probability of being detected under different utility settings.

Method (5,30) (10,25) (15,20) (20,15) (25,10) (30,5)

avg std avg std avg std avg std avg std avg std

Ours 0.04 0.03 0.10 0.06 0.20 0.10 0.63 0.11 0.75 0.10 0.83 0.07
Classical MPC 0.08 0.05 0.17 0.09 0.28 0.13 0.79 0.12 0.87 0.09 0.93 0.07
R
d
h
c
p
t
(

R
d

z
t
o
t
t
e
a
c
d
s

f
T
c
h
s

Fig. 4. Utility difference under different utility settings.

able 8
ASO properties for DARTSim.
Metric Situation 1 Situation 2

Stability True True
Accuracy (target) 0 0
Accuracy (threat) 0 0
Settling time 4 steps 3 steps
Overshoot (target) 0 0.4
Overshoot (threat) 0.53 0

nclusion of various potential outcomes from the predictions neces-
itates a cautious adaptation approach. For instance, even when the
ontext remains at 𝑡𝑎𝑟𝑔𝑒𝑡 = 0, the SMPC still considers the possibility
f 𝑡𝑎𝑟𝑔𝑒𝑡 = 1. This cautious planning strategy, while potentially conser-
ative, ensures that adaptations in the face of prediction errors do not
everely compromise the system, thereby enhancing reliability.

A closer examination reveals a distinct operational difference be-
ween the two methods in Situation 2, where our approach begins to
ecrease altitude a step earlier than the classical MPC method. This
reemptive action is informed by the experimental setup, where the
dvantages of target detection surpass the risks of threat exposure,
nd an early descent yields greater overall utility. The incorporation
f a latency-aware system model enables our method to anticipate and
dapt prior to target arrival, in contrast to the classical MPC approach,
hich, lacking latency consideration, adjusts with a delay. This case
xemplifies the timeliness and proactive nature of our adaptation strat-
gy, demonstrating its superiority in scenarios requiring anticipatory
djustments.
 v

11 
Fig. 5. Running detail of the specific context.

Q3:. In our experimentation, the time for prediction fusion via evi-
ence theory proved to be minimal. Even with an expanded prediction
orizon of 10, the process consumed merely about 0.01 s. However, the
omputational overhead escalates substantially with an increase in the
otential values for a context variable, a challenge recognized within
he domain of evidence theory research, as discussed by Voorbraak
1989).

We also analyzed the planning time in the experiments for RQ1 and
Q2, finding it to average around 400 ms with peaks up to 500ms—a
uration deemed acceptable for most applications.

Given the direct correlation between planning time, prediction hori-
on, and uncertainty horizon, we adjusted these parameters to evaluate
heir impact on planning duration, as illustrated in Fig. 6. It was
bserved that planning time exhibits a roughly linear increase with
he extension of the prediction horizon. This increment correlates with
he linear growth of the solution 𝐴𝑆(𝑡, ℎ) as the prediction horizon ℎ
xtends. Conversely, the planning time escalates more drastically with
n enlarged uncertainty horizon due to the exponential rise in possible
ontext scenarios. With the uncertainty horizon reaching 5, planning
urations exceeded 30 s, a threshold considered impractical for most
cenarios, hence its exclusion from the figure.

Further adjustments involved varying the number of possible values
or the context variable, with the planning times documented in Fig. 7.
he data indicate that planning durations extend with an increase in the
ontext variable’s potential values, particularly when the uncertainty
orizon is broader. This trend is attributed to the polynomial relation-
hip between the number of context scenarios and both the context
ariable’s potential values and the uncertainty horizon.



Z. Chen et al. The Journal of Systems & Software 217 (2024) 112166 
Fig. 6. Planning time under different prediction horizon and uncertain horizon.

Fig. 7. Planning time under different number of possible context values.

Thus, in complex contextual scenarios, it becomes essential to cur-
tail the uncertainty horizon to ensure planning times remain within
acceptable bounds.

It is important to note that planning duration is also influenced by
other factors, including the intrinsic properties of the problem and the
capabilities of the solver, aspects that fall beyond the scope of this
paper.

7.4. Evaluation summary and threats to validity

Our experimental findings underscore the effectiveness of our me-
thod in facilitating a reliable proactive adaptation strategy. Leveraging
evidence theory to amalgamate historical predictions significantly im-
proves prediction accuracy, thereby enhancing the adaptation utility.
Furthermore, the deployment of an SMPC-based planning approach, en-
hanced by a latency-aware system model and a utility model grounded
in the technical debt metaphor, enables the identification of more
effective adaptation strategies in comparison to conventional MPC
approaches.

Internal Validity: The primary challenge to internal validity arises
from the influence of parameter configurations on the outcomes of our
experiments. In addressing RQ1, we varied predictor parameters, such
as failure probabilities, and for RQ2, we adjusted the parameters of
the utility model, such as revenue figures. We conducted experiments
under varied configurations to confirm the robustness of our approach.
12 
Additionally, to counteract the potential bias from specific contextual
scenarios, contextual data were randomly generated for utility com-
parisons, aiming to neutralize the experimental bias towards particular
scenarios.

External Validity: External validity revolves around the applicability
and generalizability of our results. Our use of the DARTSim case
study, a simplified model of a Cyber–Physical System (CPS), presents
a scenario with system models that are well-documented in literature.
Nonetheless, extending our approach to a broader range of software
systems might require domain-specific knowledge or the application of
system identification techniques to obtain accurate system models.

Construct Validity: Construct validity concerns whether the exper-
iment’s metrics accurately reflect the theoretical constructs they are
intended to measure. In addressing RQ1, we devised specific accuracy
scores tailored to our methodology rather than relying on generic met-
rics such as accuracy and recall. This decision was driven by the need to
assess the performance of methods when predictions are probabilistic.
For RQ2, the evaluation focused on utility values and the probability
of being detected, aiming to establish the efficacy of our approach
through the analysis of average or median utility values. Additionally,
the reliability of the adaptation strategy was assessed based on the
worst-case utility value.

8. Conclusion

In this study, we introduce a novel framework for proactive self-
adaptation, aiming to derive reliable strategies under uncertain con-
texts. Our methodology integrates a prediction fusion mechanism uti-
lizing evidence theory with a planning approach based on extended
SMPC. Through prediction fusion, we improve context prediction accu-
racy and bolster the reliability of responding to erroneous predictions
by incorporating uncertainty into decision-making via SMPC. Further-
more, we extend SMPC by integrating a latency-aware system model
and a utility model grounded in technical debt. This expansion facili-
tates enhanced problem modeling and further refines the effectiveness
of adaptation strategies. Through empirical analysis using the DARTSim
scenario, we demonstrate the efficacy of our framework in augmenting
the reliability of software systems.

A notable limitation of our approach is the prediction fusion met-
hod’s design, which is tailored for discrete context variables, requiring
the discretization of continuous variables for application. Moreover, the
deployment of model predictive approaches necessitates the availability
of an accurate system model, achievable through either direct system
modeling or system identification techniques, a prerequisite that may
not always be feasible. This is one of the main barriers to applying
control theory to practical software systems. Additionally, the stochas-
tic MPC faces challenges with computational complexity, especially in
scenarios characterized by extensive value spaces or intricate contexts,
leading to prolonged planning duration. However, several optimization
strategies can be employed to adapt our method to more complex
application scenarios. For complex environments, we can reduce the
planning horizon or prune context combinations with a relatively lower
occurrence probability. Moreover, utilizing more advanced solvers or
algorithms can significantly reduce planning time. For example, the
HSL MA27 solver will have a significant speed boost compared to the
MUMPS solver that our method currently uses.

Moving forward, our research will delve into advanced evidence
theory techniques and diverse prediction fusion techniques to refine
the precision and versatility of our prediction fusion approach. Fur-
thermore, we aim to explore alternative methods for representing
the utility of adaptation strategies. In certain applications, users may
exhibit varying preferences regarding risk and reliability. Consequently,
alternative metrics for evaluating adaptation strategies may better align
with user needs. For instance, optimizing the worst-case scenario using
the Min–max form could be more effective in scenarios with lower risk
acceptance. Finally, we plan to expand our experimental validations
across a wider array of scenarios and use cases, thereby enhancing the
generalizability and impact of our contributions to the field of proactive
self-adaptation.



Z. Chen et al.

t

The Journal of Systems & Software 217 (2024) 112166 
CRediT authorship contribution statement

Zhengyin Chen: Writing – original draft, Software, Methodology,
Conceptualization. Jialong Li: Writing – review & editing, Investiga-
ion. Nianyu Li: Writing – review & editing, Supervision, Investigation.
Wenpin Jiao: Writing – review & editing, Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

https://github.com/easton-chen/DART-SMPC.git.

Acknowledgments

The research was supported by National Key R&D Program of China,
Granted No. 2023YFC3502900, and Natural Science Foundation of
China, Granted No. 62192730 and No. 62192731.

References

Ali, R., Dalpiaz, F., Giorgini, P., 2010. A goal-based framework for contextual require-
ments modeling and analysis. Requir. Eng. 15 (4), 439–458. http://dx.doi.org/10.
1007/s00766-010-0110-z.

Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M., 2019. CasADi – a
software framework for nonlinear optimization and optimal control. Math. Program.
Comput. 11 (1), 1–36. http://dx.doi.org/10.1007/s12532-018-0139-4.

Andrieux, A., Czajkowski, K., Dan, A., Keahey, K., Ludwig, H., Nakata, T., Pruyne, J.,
Rofrano, J., Tuecke, S., Xu, M., 2007. Web services agreement specification
(WS-agreement). In: Open Grid Forum. 128, (1), Citeseer, p. 216.

Angelopoulos, K., Papadopoulos, A.V., Silva Souza, V.E., Mylopoulos, J., 2016. Model
predictive control for software systems with CobRA. In: Proceedings of the
11th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems. ACM, Austin Texas, pp. 35–46. http://dx.doi.org/10.1145/
2897053.2897054.

Angelopoulos, K., Papadopoulos, A.V., Souza, V.E.S., Mylopoulos, J., 2018. Engineering
self-adaptive software systems: From requirements to model predictive control.
ACM Trans. Auton. Adapt. Syst. 13 (1), 1–27. http://dx.doi.org/10.1145/3105748.

Ayala, I., Papadopoulos, A.V., Amor, M., Fuentes, L., 2021. ProDSPL: Proactive self-
adaptation based on dynamic software product lines. J. Syst. Softw. 175, 110909.
http://dx.doi.org/10.1016/j.jss.2021.110909.

Cámara, J., Moreno, G.A., Garlan, D., 2014. Stochastic game analysis and latency
awareness for proactive self-adaptation. In: Proceedings of the 9th Interna-
tional Symposium on Software Engineering for Adaptive and Self-Managing
Systems. ACM, Hyderabad India, pp. 155–164. http://dx.doi.org/10.1145/2593929.
2593933.

Chen, T., Bahsoon, R., Wang, S., Yao, X., 2018. To adapt or not to adapt?: technical debt
and learning driven self-adaptation for managing runtime performance. In: Proceed-
ings of the 2018 ACM/SPEC International Conference on Performance Engineering.
ACM, Berlin Germany, pp. 48–55. http://dx.doi.org/10.1145/3184407.3184413.

Cooray, D., Kouroshfar, E., Malek, S., Roshandel, R., 2013. Proactive self-adaptation for
improving the reliability of mission-critical, embedded, and mobile software. IEEE
Trans. Softw. Eng. 39 (12), 1714–1735. http://dx.doi.org/10.1109/TSE.2013.36.

Cunningham, W., 1993. The WyCash portfolio management system. ACM Sigplan Oops
Messenger 4 (2), 29–30. http://dx.doi.org/10.1145/157710.157715.

Dempster, A.P., 1967. Upper and lower probabilities induced by a multivalued mapping.
Ann. Math. Stat. 38 (2), 325–339. http://dx.doi.org/10.1214/aoms/1177698950.

Fan, J., Tong, Y., Qin, Y., Ma, X., 2020. Overwhelming uncertainty in self-adaptation:
an empirical study on PLA and CobRA. In: 12th Asia-Pacific Symposium on
Internetware. ACM, Singapore Singapore, pp. 250–259. http://dx.doi.org/10.1145/
3457913.3457943.

Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M., Brabender, F., Lucia, S.,
2023. Do-mpc: Towards FAIR nonlinear and robust model predictive control.
Control Eng. Pract. 140, 105676. http://dx.doi.org/10.1016/j.conengprac.2023.
105676.

Gerostathopoulos, I., Raibulet, C., Alberts, E., 2022. Assessing self-adaptation strategies
using cost-benefit analysis. In: 2022 IEEE 19th International Conference on Soft-
ware Architecture Companion. ICSA-C, pp. 92–95. http://dx.doi.org/10.1109/ICSA-
C54293.2022.00023.

Hellerstein, J.L., Diao, Y., Parekh, S.S., Tilbury, D.M., 2004. Feedback Control of
Computing Systems. Wiley, http://dx.doi.org/10.1002/047166880X, URL.
13 
Incerto, E., Tribastone, M., Trubiani, C., 2017. Software performance self-adaptation
through efficient model predictive control. In: 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering. ASE, IEEE, pp. 485–496.

Keller, C., Mann, Z.Á., 2020. Towards understanding adaptation latency in self-adaptive
systems. In: Yangui, S., Bouguettaya, A., Xue, X., Faci, N., Gaaloul, W., Yu, Q.,
Zhou, Z., Hernandez, N., Nakagawa, E.Y. (Eds.), Service-Oriented Computing –
ICSOC 2019 Workshops. vol. 12019, Springer International Publishing, Cham, pp.
42–53. http://dx.doi.org/10.1007/978-3-030-45989-5_4.

Kephart, J., Chess, D., 2003. The vision of autonomic computing. Computer 36 (1),
41–50. http://dx.doi.org/10.1109/MC.2003.1160055.

Kouvaritakis, B., Cannon, M., 2016. Model predictive control, vol. 38, Springer
International Publishing, Switzerland.

Kumar, S., Bahsoon, R., Chen, T., Buyya, R., 2019. Identifying and estimating technical
debt for service composition in SaaS Cloud. In: 2019 IEEE International Conference
on Web Services. ICWS, pp. 121–125. http://dx.doi.org/10.1109/ICWS.2019.00030.

Kusic, D., Kephart, J.O., Hanson, J.E., Kandasamy, N., Jiang, G., 2009. Power and
performance management of virtualized computing environments via lookahead
control. Cluster Comput. 12 (1), 1–15. http://dx.doi.org/10.1007/s10586-008-
0070-y.

Lemos, R.d., Giese, H., Müller, H.A., Shaw, M., Andersson, J., Litoiu, M., Schmerl, B.,
Tamura, G., Villegas, N.M., Vogel, T., et al., 2013. Software engineering for
self-adaptive systems: A second research roadmap. In: Software Engineering for
Self-Adaptive Systems II. Springer, pp. 1–32.

Li, N., Cámara, J., Garlan, D., Schmerl, B., Jin, Z., 2021. Hey! preparing humans to
do tasks in self-adaptive systems. In: 2021 International Symposium on Software
Engineering for Adaptive and Self-Managing Systems. SEAMS, pp. 48–58. http:
//dx.doi.org/10.1109/SEAMS51251.2021.00017.

Ljung, L., 1998. System Identification: Theory for the User. Pearson Education.
Maggio, M., Papadopoulos, A.V., Filieri, A., Hoffmann, H., 2017. Automated control of

multiple software goals using multiple actuators. In: Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering. ACM, Paderborn Germany,
pp. 373–384. http://dx.doi.org/10.1145/3106237.3106247.

Metzger, A., Neubauer, A., Bohn, P., Pohl, K., 2019. Proactive process adaptation
using deep learning ensembles. In: Giorgini, P., Weber, B. (Eds.), In: Advanced
Information Systems Engineering, vol. 11483, Springer International Publishing,
Cham, pp. 547–562. http://dx.doi.org/10.1007/978-3-030-21290-2_34.

Moreno, G.A., Cámara, J., Garlan, D., Schmerl, B., 2015. Proactive self-adaptation under
uncertainty: A probabilistic model checking approach. In: Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering. ACM, Bergamo Italy,
pp. 1–12. http://dx.doi.org/10.1145/2786805.2786853.

Moreno, G.A., Cámara, J., Garlan, D., Schmerl, B., 2018. Flexible and efficient decision-
making for proactive latency-aware self-adaptation. ACM Trans. Auton. Adapt. Syst.
13 (1), 1–36. http://dx.doi.org/10.1145/3149180.

Moreno, G., Kinneer, C., Pandey, A., Garlan, D., 2019. DARTSim: An exemplar
for evaluation and comparison of self-adaptation approaches for smart cyber-
physical systems. In: 2019 IEEE/ACM 14th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems. SEAMS, IEEE, Montreal, QC,
Canada, pp. 181–187. http://dx.doi.org/10.1109/SEAMS.2019.00031.

Moreno, G.A., Papadopoulos, A.V., Angelopoulos, K., Camara, J., Schmerl, B., 2017.
Comparing model-based predictive approaches to self-adaptation: CobRA and PLA.
In: 2017 IEEE/ACM 12th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems. SEAMS, IEEE, Buenos Aires, Argentina, pp.
42–53. http://dx.doi.org/10.1109/SEAMS.2017.2.

Neufelder, A.M., et al., 2016. IEEE recommended practice on software reliability. IEEE
Standard 1633–2016.

Palmerino, J., Yu, Q., Desell, T., Krutz, D., 2019. Improving the decision-making process
of self-adaptive systems by accounting for tactic volatility. In: 2019 34th IEEE/ACM
International Conference on Automated Software Engineering. ASE, pp. 949–961.
http://dx.doi.org/10.1109/ASE.2019.00092.

Salehie, M., Tahvildari, L., 2009. Self-adaptive software: Landscape and research
challenges. ACM Trans. Autonomous Adapt. Syst. (taas) 4 (2), 1–42.

Shafer, G., 1976. A Mathematical Theory of Evidence. Princeton University Press.
Shin, Y.-J., Cho, E., Bae, D.-H., 2021. PASTA: An efficient proactive adaptation approach

based on statistical model checking for self-adaptive systems. In: Guerra, E.,
Stoelinga, M. (Eds.), In: Fundamental Approaches To Software Engineering, vol.
12649, Springer International Publishing, Cham, pp. 292–312. http://dx.doi.org/
10.1007/978-3-030-71500-7_15.

Tanabe, M., Tei, K., Fukazawa, Y., Honiden, S., 2017. Learning environment model at
runtime for self-adaptive systems. In: Proceedings of the Symposium on Applied
Computing. pp. 1198–1204.

Voorbraak, F., 1989. A computationally efficient approximation of Dempster-Shafer
theory. Int. J. Man-Mach. Stud. 30 (5), 525–536. http://dx.doi.org/10.1016/S0020-
7373(89)80032-X.

Wang, C., Pazat, J.-L., 2012. A two-phase online prediction approach for accurate
and timely adaptation decision. In: 2012 IEEE Ninth International Conference on
Services Computing. IEEE, Honolulu, HI, USA, pp. 218–225. http://dx.doi.org/10.
1109/SCC.2012.26.

Wang, H., Wang, L., Yu, Q., Zheng, Z., Yang, Z., 2018. A proactive approach based on
online reliability prediction for adaptation of service-oriented systems. J. Parallel
Distrib. Comput. 114, 70–84. http://dx.doi.org/10.1016/j.jpdc.2017.12.006.

https://github.com/easton-chen/DART-SMPC.git
http://dx.doi.org/10.1007/s00766-010-0110-z
http://dx.doi.org/10.1007/s00766-010-0110-z
http://dx.doi.org/10.1007/s00766-010-0110-z
http://dx.doi.org/10.1007/s12532-018-0139-4
http://refhub.elsevier.com/S0164-1212(24)00211-5/sb3
http://refhub.elsevier.com/S0164-1212(24)00211-5/sb3
http://refhub.elsevier.com/S0164-1212(24)00211-5/sb3
http://refhub.elsevier.com/S0164-1212(24)00211-5/sb3
http://refhub.elsevier.com/S0164-1212(24)00211-5/sb3
http://dx.doi.org/10.1145/2897053.2897054
http://dx.doi.org/10.1145/2897053.2897054
http://dx.doi.org/10.1145/2897053.2897054
http://dx.doi.org/10.1145/3105748
http://dx.doi.org/10.1016/j.jss.2021.110909
http://dx.doi.org/10.1145/2593929.2593933
http://dx.doi.org/10.1145/2593929.2593933
http://dx.doi.org/10.1145/2593929.2593933
http://dx.doi.org/10.1145/3184407.3184413
http://dx.doi.org/10.1109/TSE.2013.36
http://dx.doi.org/10.1145/157710.157715
http://dx.doi.org/10.1214/aoms/1177698950
http://dx.doi.org/10.1145/3457913.3457943
http://dx.doi.org/10.1145/3457913.3457943
http://dx.doi.org/10.1145/3457913.3457943
http://dx.doi.org/10.1016/j.conengprac.2023.105676
http://dx.doi.org/10.1016/j.conengprac.2023.105676
http://dx.doi.org/10.1016/j.conengprac.2023.105676
http://dx.doi.org/10.1109/ICSA-C54293.2022.00023
http://dx.doi.org/10.1109/ICSA-C54293.2022.00023
http://dx.doi.org/10.1109/ICSA-C54293.2022.00023
http://dx.doi.org/10.1002/047166880X
http://refhub.elsevier.com/S0164-1212(24)00211-5/sb16
http://refhub.elsevier.com/S0164-1212(24)00211-5/sb16
http://refhub.elsevier.com/S0164-1212(24)00211-5/sb16
http://refhub.elsevier.com/S0164-1212(24)00211-5/sb16
http://refhub.elsevier.com/S0164-1212(24)00211-5/sb16
http://dx.doi.org/10.1007/978-3-030-45989-5_4
http://dx.doi.org/10.1109/MC.2003.1160055
http://refhub.elsevier.com/S0164-1212(24)00211-5/sb19
http://refhub.elsevier.com/S0164-1212(24)00211-5/sb19
http://refhub.elsevier.com/S0164-1212(24)00211-5/sb19
http://dx.doi.org/10.1109/ICWS.2019.00030
http://dx.doi.org/10.1007/s10586-008-0070-y
http://dx.doi.org/10.1007/s10586-008-0070-y
http://dx.doi.org/10.1007/s10586-008-0070-y
http://refhub.elsevier.com/S0164-1212(24)00211-5/sb22
http://refhub.elsevier.com/S0164-1212(24)00211-5/sb22
http://refhub.elsevier.com/S0164-1212(24)00211-5/sb22
http://refhub.elsevier.com/S0164-1212(24)00211-5/sb22
http://refhub.elsevier.com/S0164-1212(24)00211-5/sb22
http://refhub.elsevier.com/S0164-1212(24)00211-5/sb22
http://refhub.elsevier.com/S0164-1212(24)00211-5/sb22
http://dx.doi.org/10.1109/SEAMS51251.2021.00017
http://dx.doi.org/10.1109/SEAMS51251.2021.00017
http://dx.doi.org/10.1109/SEAMS51251.2021.00017
http://refhub.elsevier.com/S0164-1212(24)00211-5/sb24
http://dx.doi.org/10.1145/3106237.3106247
http://dx.doi.org/10.1007/978-3-030-21290-2_34
http://dx.doi.org/10.1145/2786805.2786853
http://dx.doi.org/10.1145/3149180
http://dx.doi.org/10.1109/SEAMS.2019.00031
http://dx.doi.org/10.1109/SEAMS.2017.2
http://refhub.elsevier.com/S0164-1212(24)00211-5/sb31
http://refhub.elsevier.com/S0164-1212(24)00211-5/sb31
http://refhub.elsevier.com/S0164-1212(24)00211-5/sb31
http://dx.doi.org/10.1109/ASE.2019.00092
http://refhub.elsevier.com/S0164-1212(24)00211-5/sb33
http://refhub.elsevier.com/S0164-1212(24)00211-5/sb33
http://refhub.elsevier.com/S0164-1212(24)00211-5/sb33
http://refhub.elsevier.com/S0164-1212(24)00211-5/sb34
http://dx.doi.org/10.1007/978-3-030-71500-7_15
http://dx.doi.org/10.1007/978-3-030-71500-7_15
http://dx.doi.org/10.1007/978-3-030-71500-7_15
http://refhub.elsevier.com/S0164-1212(24)00211-5/sb36
http://refhub.elsevier.com/S0164-1212(24)00211-5/sb36
http://refhub.elsevier.com/S0164-1212(24)00211-5/sb36
http://refhub.elsevier.com/S0164-1212(24)00211-5/sb36
http://refhub.elsevier.com/S0164-1212(24)00211-5/sb36
http://dx.doi.org/10.1016/S0020-7373(89)80032-X
http://dx.doi.org/10.1016/S0020-7373(89)80032-X
http://dx.doi.org/10.1016/S0020-7373(89)80032-X
http://dx.doi.org/10.1109/SCC.2012.26
http://dx.doi.org/10.1109/SCC.2012.26
http://dx.doi.org/10.1109/SCC.2012.26
http://dx.doi.org/10.1016/j.jpdc.2017.12.006


Z. Chen et al. The Journal of Systems & Software 217 (2024) 112166 
Wang, L., Xu, J., Duran-Limon, H.A., Zhao, M., 2015. Qos-driven cloud resource
management through fuzzy model predictive control. In: 2015 IEEE International
Conference on Autonomic Computing. IEEE, pp. 81–90.

Weyns, D., 2020. An Introduction to Self-adaptive Systems: A Contemporary Software
Engineering Perspective. John Wiley & Sons.

Zhang, J., Ma, M., Wang, P., 2020. Lead time-aware proactive adaptation for service-
oriented systems. In: 2020 IEEE International Conference on Web Services. ICWS,
IEEE, Beijing, China, pp. 481–488. http://dx.doi.org/10.1109/ICWS49710.2020.
00071.

Zhengyin Chen received the B.Sc. degree in computer science and technology from
Peking University. He is currently pursuing the Ph.D. degree in computer software
and theory under the supervision of Prof. Wenpin Jiao at the School of Computer Sci-
ence, Peking University. His research interests include self-adaptive systems, proactive
software systems, control systems, and context prediction.

Jialong Li is now a Research Associate at Waseda University in Tokyo, Japan. He
received B.E and M.E degrees in Computer Science from Waseda University in 2019
and 2021, respectively. His research interests are in self-adaptive systems, software
14 
engineering, and human–computer interaction. He is a member of the IEEE Computer
Society (IEEE CS), and Association for Computing Machinery (ACM).

Nianyu Li received her doctorate in Computer Software and Theory from Peking
University under the guidance of Prof. Zhi Jin and Prof. Wenpin Jiao. Additionally,
She had the opportunity to serve as a Visiting Research Intern at the National
Institute of Informatics (NII) and Carnegie Mellon University (CMU). Her primary
research area is human-involved self-adaptive systems, where she focuses on applying
rigorous modeling and analysis techniques, frameworks, and control paradigms. She
has a particular interest in human-in-the-loop systems, software design, requirements
modeling, specification and verification, system safety, security, and cyber–physical
systems.

Wenpin Jiao received the B.S. and M.S. degrees in computer science from the East
China University of Science and Technology, in 1991 and 1997, respectively, and the
Ph.D. degree in computer science from the Institute of Software, Chinese Academy of
Sciences, in 2000. He is currently a Full Professor with the School of Computer Science,
Peking University. His research interests include software engineering, multiagent
systems, and intelligent software technology.

http://refhub.elsevier.com/S0164-1212(24)00211-5/sb40
http://refhub.elsevier.com/S0164-1212(24)00211-5/sb40
http://refhub.elsevier.com/S0164-1212(24)00211-5/sb40
http://refhub.elsevier.com/S0164-1212(24)00211-5/sb40
http://refhub.elsevier.com/S0164-1212(24)00211-5/sb40
http://refhub.elsevier.com/S0164-1212(24)00211-5/sb41
http://refhub.elsevier.com/S0164-1212(24)00211-5/sb41
http://refhub.elsevier.com/S0164-1212(24)00211-5/sb41
http://dx.doi.org/10.1109/ICWS49710.2020.00071
http://dx.doi.org/10.1109/ICWS49710.2020.00071
http://dx.doi.org/10.1109/ICWS49710.2020.00071

	Reliable proactive adaptation via prediction fusion and extended stochastic model predictive control
	Introduction
	Related Work
	Context Prediction
	Model Predictive Decision-Making
	Adaptation latency and effect assessment

	Background
	Evidence theory
	Technical debt
	Model predictive control
	Running example: DARTSim

	Approach Overview
	Prediction Fusion based on Evidence Theory
	Context prediction
	Prediction fusion

	Decision-Making Based on Extended Stochastic MPC
	Notations in MPC-based proactive adaptation
	Latency-awareness in MPC
	Comprehensive objective function based on technical debt
	Stochastic control logic

	Experiments
	Experiment case: DARTSim
	Experiment design
	Results
	Evaluation Summary and threats to validity

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


